Advertisement

Solar Physics

, 294:159 | Cite as

Evolution of Coronal and Interplanetary Shock Waves Inferred from a Radio Burst

  • Khaled AlieldenEmail author
Article

Abstract

Studying the evolution of the source of a radio burst, which is recognized as a shock wave, is important for understanding its generation mechanism and predicting its hazards. Estimating the kinematics of radio-burst sources using electron-density models is not easy. In this article, the kinematics of the Type-II radio-burst source is estimated without using electron-density models by studying the density variation along the leading surface of the coronal mass ejections (CMEs) (hereafter ejecta) during Type-II radio-burst emission. This technique is valid for analyzing the Type-II radio-burst spectrum in metric and DH ranges, from which we can infer ejecta propagation from the corona into interplanetary space. It is found that the Type-II radio burst can be described by the Sedov–Taylor blast-wave equation by matching the calculated theoretical frequencies with that observed by the RAD1 and RAD2 receivers. The theoretical model showed a good fit with the observed spectra of Type-II radio bursts of different Type-II events. The analysis was consistent with the previous work regarding the conditions of the Sedov–Taylor equation and statistical studies of the density variation on the surface area of an interplanetary CME. The kinematics of a Type-II radio-burst source and the temporal variation of its energy are estimated during the Type-II radio-burst emission. The results of the two cases studied show that the energy of ejecta degraded by \(\approx 14\% \) of its initial energy at the beginning of metric Type-II radio emission on 16 March 2016, while the energy of ejecta degraded by \(\approx 86\%\) and \(\approx 20 \% \) for DH Type-II radio burst as recorded by RAD1 and RAD2 on 7 November 2004, respectively. The analysis shows that the radial speed of the blast wave is lower than its transversal speed along the surface of ejecta and extends to a small fraction of R from its source point on the ejecta. The magnetic-field strength of the ejecta and the ambient medium are estimated during the Type-II radio-burst emission. This study emphasizes that the emission of a blast wave from the reconnection sites within the ejecta is one of the processes that degrades the energy of ejecta during their propagation.

Keywords

Type II radio burst: source and dynamic spectrum CMEs 

Notes

Acknowledgements

I am grateful to Ayman Mahrous, Helwan University in Egypt, Bojan Vršnak, Hvar Observatory in Croatia, and Alexander Nindos, University of Ioannina in Greece for their guidance and support. Thanks to the staff of the Learmonth solar radio spectrograph for their data and the NASA Staff of Wind/WAVES for their data.

References

  1. Bothmer, V., Schwenn, R.: 1997, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys.16, 1. ADSCrossRefGoogle Scholar
  2. Cane, H.V., Sheeley, N.R., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res.92(A9), 9869. ADSCrossRefGoogle Scholar
  3. Cliver, E.W., Nitta, N.V., Thompson, B.J., Zhang, J.: 2004, Coronal shocks of November 1997 revisited: The CME–type II timing problem. Solar Phys.225(1), 105. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Cook, N.B.: 2010, Analytical proof of the Taylor equation including Taylor’s constant \(S\gamma\) which previously required numerical integration, with applications. http://vixra.org/pdf/1003.0259v1.pdf.
  5. Cowling, T.G.: 1953, The Solar System, vol. 1: The Sun. University of Chicago Press, Chicago, 533. Google Scholar
  6. Draine, B.T., McKee, C.F.: 1993, Theory of interstellar shocks. Annu. Rev. Astron. Astrophys.31(1), 373. ADSCrossRefGoogle Scholar
  7. Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, Energy partition in two solar flare/CME events. J. Geophys. Res., Space Phys. 109(A10). Google Scholar
  8. Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., Share, G.H., Vourlidas, A., Welsch, B.T.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J.759(1), 71. ADSCrossRefGoogle Scholar
  9. Fermo, R.L., Opher, M., Drake, J.F.: 2014, Magnetic reconnection in the interior of interplanetary coronal mass ejections. Phys. Rev. Lett.113(3), 031101. ADSCrossRefGoogle Scholar
  10. Gopalswamy, N.: 2006, Coronal mass ejections and type II radio bursts. In: Gopalswamy, N., Mewaldt, R., Torsti, J. (eds.) Solar Eruptions and Energetic Particles, Geophys. Monograph. Ser.165, AGU, Washington, 207. Google Scholar
  11. Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Russell, C.T., Priest, E.R., Lee, L.C. (eds.) Physics of Magnetic Flux RopesMS-58, AGU, Washington, 343. CrossRefGoogle Scholar
  12. Kallenrode, M.B., Wibberenz, G., Kunow, H., Müller-Mellin, R., Stolpovskii, V., Kontor, N.: 1993, Multi-spacecraft observations of particle events and interplanetary shocks during November/December 1982. Solar Phys.147(2), 377. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Leblanc, Y., Dulk, G.A., Vourlidas, A., Bougeret, J.L.: 2001, Tracing shock waves from the corona to 1 AU: Type II radio emission and relationship with CMEs. J. Geophys. Res.106(A11), 25301. ADSCrossRefGoogle Scholar
  14. Lengyel-Frey, D.: 1992, Location of the radio emitting regions of interplanetary shocks. J. Geophys. Res.97(A2), 1609. ADSCrossRefGoogle Scholar
  15. Liu, Y., Luhmann, J.G., Bale, S.D., Lin, R.P.: 2009, Relationship between a coronal mass ejection driven shock and a coronal metric type II burst. Astrophys. J. Lett.69 1(2), L151. ADSCrossRefGoogle Scholar
  16. Long, D.M., Baker, D., Williams, D.R., Carley, E.P., Gallagher, P.T., Zucca, P.: 2015, The energetics of a global shock wave in the low solar corona. Astrophys. J.799(2), 224. ADSCrossRefGoogle Scholar
  17. Mann, G., Classen, T., Aurass, H.: 1995, Characteristics of coronal shock waves and solar type II radio bursts. Astron. Astrophys.295, 775. ADSGoogle Scholar
  18. Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare generated shock during a coronal mass ejection on 24 December 1996. Solar Phys.253(1–2), 305. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Mahrous, A., Alielden, K., Vršnak, B., Youssef, M.: 2018, Type II solar radio burst band-splitting: 551 measure of coronal magnetic field strength. J. Atmos. Solar-Terr. Phys.172, 75. ADSCrossRefGoogle Scholar
  20. Nelson, G.J., Melrose, D.B.: 1985, Type II bursts. In: MacLean, D.J., Labrum, N.R. (eds.) Solar Radiophysics: Studies of Emission from the Sun at Meter Wavelengths, Cambridge University Press, Cambridge, 333. Google Scholar
  21. Pikel’ner, S.B., Gintsburg, M.A.: 1964, The mechanism of type II bursts of solar radio emission. Soviet Astron.7, 639. ADSGoogle Scholar
  22. Reiner, M.J., Kaiser, M.L., Fainberg, J., Bougeret, J.L., Stone, R.G.: 1998, On the origin of radio emissions associated with the January 6 – 11, 1997, CME. Geophys. Res. lett.25(14), 2493. ADSCrossRefGoogle Scholar
  23. Rogers, M.H.: 1957, Analytic solutions for the blast-wave problem with an atmosphere of varying 561 density. Astrophys. J.125, 478. ADSMathSciNetCrossRefGoogle Scholar
  24. Sedov, L.I.: 1946, Propagation of strong shock waves. J. Appl. Math. Mech.10(564), 241. Google Scholar
  25. Smerd, S.F., Sheridan, K.V., Stewart, R.T.: 1975, Split-band structure in type II radio bursts from the 567 Sun. Astrophys. Lett.16, 23. ADSGoogle Scholar
  26. Taylor, G.I.: 1950, The formation of a blast wave by a very intense explosion, I: Theoretical discussion. Proc. Roy. Soc. London Ser. A, Math. Phys. Sci.201, 159. 1065. ADSCrossRefGoogle Scholar
  27. Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J.722, 1522. ADSCrossRefGoogle Scholar
  28. Vršnak, B., Aurassć, H., Magdalenić, J., Gopalswamy, N.: 2001, Band-splitting of coronal and interplanetary type II bursts-I. Basic properties. Astron. Astrophys.377(1), 321. ADSCrossRefGoogle Scholar
  29. Vršnak, B., Magdalenić, J., Aurass, H., Mann, G.: 2002, Band-splitting of coronal and interplanetary type II 577 bursts, II: Coronal magnetic field and Alfvén velocity. Astron. Astrophys.396(2), 673. ADSCrossRefGoogle Scholar
  30. Westfold, K.C.: 1957, Magnetohydrodynamic shock waves in the solar corona, with applications to bursts 580 of radio-frequency radiation. Phil. Mag.2(23), 1287. ADSMathSciNetCrossRefGoogle Scholar
  31. White, S.M.: 2007, Solar radio bursts and space weather. Asian J. Phys.16, 189. Google Scholar
  32. Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at 585 metre wavelengths, I: The apparatus and spectral types of solar burst observed. Austral. J. Chem.3(3), 387. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsHelwan UniversityHelwanEgypt

Personalised recommendations