Solar Physics

, 294:74 | Cite as

Velocity Structure and Temperature Dependence of an Extreme-Ultraviolet Jet Observed by Hinode

  • T. KawaiEmail author
  • N. Kanda
  • S. Imada


The acceleration mechanism of EUV and X-ray jets is still unclear. In general, there are two candidates for the mechanism. One is magnetic reconnection, and the other is chromospheric evaporation. We observed a relatively compact X-ray jet that occurred between 10:50 – 11:10 UT on 18 February 2011 by using the Solar Dynamics Observatory/Atmospheric Imaging Assembly, and the X-ray Telescope, Solar Optical Telescope, and EUV Imaging Spectrometer onboard Hinode. Our results are as follows: i) The EUV and X-ray observations show the general characteristics of X-ray jets, such as an arcade straddling a polarity inversion line, a jet bright point shown at one leg of the arcade, and a spire above the arcade. ii) The multi-wavelength observations and Ca ii H line image show the existence of a low-temperature (≈ 10 000 K) plasma (i.e., filament) at the center of the jet. iii) In the magnetogram and Ca ii H line image, the filament exists over the polarity inversion line and arcade is also straddling it. In addition, magnetic cancellation occurs around the jet a few hours before and after the jet is observed. iv) The temperature distribution of the accelerated plasma, which was estimated from Doppler velocity maps, the calculated differential emission measure, and synthetic spectra show that there is no clear dependence between the plasma velocity and its temperature. For our third result, observations indicate that magnetic cancellation is probably related to the occurrence of the jet and filament formation. This suggests that the trigger of the jet is magnetic cancellation rather than flux emergence. The fourth result indicates that plasma acceleration accompanied by an X-ray jet seems to be caused by magnetic reconnection rather than chromospheric evaporation.


Jets Spectrum, ultraviolet Spectrum, X-rays Magnetic reconnection, observational signatures 



This work was partially supported by the Grant-in-Aid for 17K14401 and 15H05816, and the Program for Leading Graduate Schools, “PhD Professional: Gateway to Success in Frontier Asia” by the Ministry of Education, Culture, Sports, Science and Technology. Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (U.K.), NASA (U.S.A.), ESA, and NSC (Norway). The Solar Dynamics Observatory is part of NASA’s Living with a Star program. A part of this study was carried out using the computational resource of the Center for Integrated Data Science, Institute for Space-Earth Environmental Research, Nagoya University.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2019_1469_MOESM1_ESM.mp4 (169 kb)
(MP4 169 kB)


  1. Aschwanden, M.J., Boerner, P., Schrijver, C.J., Malanushenko, A.: 2013, Solar Phys. 283, 5. DOI. CrossRefADSGoogle Scholar
  2. Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., et al.: 2012, Solar Phys. 275, 41. DOI. CrossRefADSGoogle Scholar
  3. Culhane, J.L., Harra, L.K., James, A.M., Al-Janabi, K., Bradley, L.J., Chaudry, R.A., et al.: 2007, Solar Phys. 243, 61. DOI. CrossRefGoogle Scholar
  4. Del Zanna, G., Dere, K.P., Young, P.R., Landi, E., Mason, H.E.: 2015, Astron. Astrophys. 582, A56. DOI. CrossRefGoogle Scholar
  5. Fisher, G.H., Canfield, R.C., McClymont, A.N.: 1984, Astrophys. J. 281, L79. DOI. CrossRefADSGoogle Scholar
  6. Freeland, S.L., Handy, B.N.: 1998, Solar Phys. 182, 500. DOI. CrossRefADSGoogle Scholar
  7. Golub, L., Deluca, E., Austin, G., Bookbinder, J., Caldwell, D., Cheimets, P., et al.: 2007, Solar Phys. 243, 63. DOI. CrossRefADSGoogle Scholar
  8. Imada, S., Murakami, I., Watanabe, T.: 2015, Phys. Plasmas 22, 101206. DOI. CrossRefADSGoogle Scholar
  9. Imada, S., Hara, H., Watanabe, T., Kamio, S., Asai, A., Matsuzaki, K., et al.: 2007, Publ. Astron. Soc. Japan 59, 793. DOI. CrossRefGoogle Scholar
  10. Imada, S., Murakami, I., Watanabe, T., Hara, H., Shimizu, T.: 2011a, Astrophys. J. 742, 11. DOI. CrossRefGoogle Scholar
  11. Imada, S., Hara, H., Watanabe, T., Murakami, I., Harra, L.K., Shimizu, T., Zweibel, E.G.: 2011b, Astrophys. J. 743, 57. DOI. CrossRefADSGoogle Scholar
  12. Imada, S., Aoki, K., Hara, H., Watanabe, T., Harra, L.K., Shimizu, T.: 2013, Astrophys. J. Lett. 776, L11. DOI. CrossRefADSGoogle Scholar
  13. Innes, D.E., et al.: 2003, Solar Phys. 217, 267. DOI. CrossRefADSGoogle Scholar
  14. Kamio, S., Hara, H., Watanabe, T., Matsuzaki, K., Shibata, K., Culhane, L., Warren, H.P.: 2007, Publ. Astron. Soc. Japan 59, S757. DOI. CrossRefADSGoogle Scholar
  15. Kamio, S., Hara, H., Watanabe, T., Fredvik, T., Hansteen, V.H.: 2010, Solar Phys. 266, 209. DOI. CrossRefADSGoogle Scholar
  16. Kumar, P., Karpen, J.T., Antiochos, S.K., Wyper, P.F., DeVore, C.R., DeForest, C.E.: 2019, Astrophys. J. 873, 93. DOI. CrossRefADSGoogle Scholar
  17. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 40. DOI. CrossRefGoogle Scholar
  18. Madjarska, M.S.: 2011, Astron. Astrophys. 526, A19. DOI. CrossRefADSGoogle Scholar
  19. Matsui, Y., Yokoyama, T., Kitagawa, N., Imada, S.: 2012, Astrophys. J. 759, 15. DOI. CrossRefADSGoogle Scholar
  20. Milligan, R.O., Dennis, B.R.: 2009, Astrophys. J. 699, 968. DOI. CrossRefADSGoogle Scholar
  21. Moore, R.L., Cirtain, J.W., Sterling, A.C., Falconer, D.A.: 2010, Astrophys. J. 720, 757. DOI. CrossRefADSGoogle Scholar
  22. Moore, R.L., Sterling, A.C., Falconer, D.A., Robe, D.: 2013, Astrophys. J. 769, 134. DOI. CrossRefADSGoogle Scholar
  23. Narukage, N., Sakao, T., Kano, R., Shimojo, M., Winebarger, A., Weber, M., Reeves, K.K.: 2014, Solar Phys. 289, 1029. DOI. CrossRefADSGoogle Scholar
  24. Ogawara, Y., Takano, T., Kato, T., Kosugi, T., Tsuneta, S., Watanabe, T., Kondo, I.: 1991, Solar Phys. 136, 1. DOI. CrossRefADSGoogle Scholar
  25. Panesar, N.K., Sterling, A.C., Moore, R.L.: 2018, Astrophys. J. 853, 189. DOI. CrossRefADSGoogle Scholar
  26. Shen, Y., Liu, Y.D., Su, J., Qu, Z., Tian, Z.: 2017, Astrophys. J. 851, 67. DOI. CrossRefADSGoogle Scholar
  27. Shibata, K., Ishido, Y., Acton, L.W., Strong, K.T., Hirayama, T., Uchida, Y., et al.: 1992, Publ. Astron. Soc. Japan 44, L173. ADSGoogle Scholar
  28. Shibata, K., Nitta, N., Matsumoto, R., Tajima, T., Yokoyama, T., Hirayama, T., Hudson, H.: 1994, In: Uchida, Y., Watanabe, T., Shibata, K., Hudson, H.S. (eds.) X-Ray Solar Physics from Yohkoh, Universal Academy Press, Tokyo, 29. Google Scholar
  29. Sterling, A.C., Moore, R.L., Falconer, D.A., Adams, M.: 2015, Nat. Lett. 523, 7561. DOI. CrossRefGoogle Scholar
  30. Sterling, A.C., Moore, R.L., Falconer, D.A., Panesar, N.K., Martinez, S.: 2017, Astrophys. J. 844, 28. DOI. CrossRefADSGoogle Scholar
  31. Strong, K.T., Harvey, K., Hirayama, T., Nitta, N., Shimizu, T., Tsuneta, S.: 1992, Publ. Astron. Soc. Japan 44, L161. ADSGoogle Scholar
  32. Tian, H., McIntosh, S.W., Xia, L., He, J., Wang, X.: 2012, Astrophys. J. 748, 106. DOI. CrossRefADSGoogle Scholar
  33. Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., et al.: 1991, Solar Phys. 136, 37. DOI. CrossRefADSGoogle Scholar
  34. Wyper, P.F., DeVore, C.R., Antiochos, S.K.: 2018, Astrophys. J. 852, 98. DOI. CrossRefADSGoogle Scholar
  35. Yokoyama, T., Shibata, K.: 1995, Nature 375, 42. DOI. CrossRefADSGoogle Scholar
  36. Young, P.R.: 2015, Astrophys. J. 801, 124. DOI. CrossRefADSGoogle Scholar
  37. Young, P.R., Muglach, K.: 2014, Publ. Astron. Soc. Japan 66, S12. DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Space-Earth Environmental ResearchNagoya UniversityNagoyaJapan

Personalised recommendations