Advertisement

Solar Physics

, 294:73 | Cite as

Observations of a Flare-Generated Blast Wave in a Pseudo Coronal Mass Ejection Event

  • V. G. Eselevich
  • M. V. Eselevich
  • I. V. ZimovetsEmail author
Article

Abstract

We present an analysis of the event near the east limb, SOL2014-03-06T09:23, in which a pseudo coronal mass ejection (CME) was detected by the Large Angle and Spectrometric Coronagraph (LASCO) C2 instrument and indicated as “Poor Event; Only C2” in the Solar and Heliospheric Observatory (SOHO) LASCO CME Catalog. The analysis was performed based on two main methods: 1) investigation of the difference brightness profiles along specific directions in the solar corona using the EUV observations by the Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO); 2) investigation of the spatially-resolved observations of the type II radio bursts made with the Nançay Radioheliograph. Based on the analysis performed we argue that the observed pseudo-CME could be a blast wave caused by impulsive flare energy release in the low corona. We also argue that, in the limited height range of \({\approx}\,0.2 \mathrm{R_{\odot }}\,\mbox{--}\,0.5 \mathrm{R}_{\odot}\), the front of this blast wave could steepen into a shock front.

Keywords

Flares, waves Radio bursts, type II Waves, shock 

Notes

Acknowledgements

The authors thank the SDO/AIA, RSTN at Learmonth, ORFEES, NRH, RHESSI, PROBA2/LYRA, GOES, SOHO/LASCO, and SOHO LASCO CME Catalog teams, whose data were used in this study. We thank the radio monitoring service at LESIA (Observatoire de Paris; http://secchirh.obspm.fr/ ) to provide value-added data that have been used for this study. The CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We are grateful to the anonymous reviewer for the useful and constructive comments which helped to improve the quality of the manuscript. We are also grateful to Dr. C.R. Goddard (University of Warwick, UK) for help with correcting the language. The work was supported by Theme 16.2 PLASMA “Conducting basic research in the field of space plasma physics, solar-terrestrial connections and magnetosphere physics”, State registration number 0120.0 602992 (No 0028-2014-0002) of the Ministry of Science and Higher Education of the Russian Federation.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Aschwanden, M.J.: 2005, Physics of the Solar Corona. An Introduction with Problems and Solutions, 2nd edn. Praxis Publishing Ltd., Chichester. ADS. Google Scholar
  2. Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C.J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P., Weber, M.: 2012, Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 41. DOI. ADS. CrossRefGoogle Scholar
  3. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS. CrossRefGoogle Scholar
  4. Dominique, M., Hochedez, J.-F., Schmutz, W., Dammasch, I.E., Shapiro, A.I., Kretzschmar, M., Zhukov, A.N., Gillotay, D., Stockman, Y., BenMoussa, A.: 2013, The LYRA instrument onboard PROBA2: Description and in-flight performance. Solar Phys. 286, 21. DOI. ADS. CrossRefGoogle Scholar
  5. Eselevich, M.V., Eselevich, V.G.: 2007, First experimental studies of a perturbed zone preceding the front of a coronal mass ejection. Astron. Rep. 51, 947. DOI. ADS. CrossRefGoogle Scholar
  6. Eselevich, M.V., Eselevich, V.G.: 2008, On formation of a shock wave in front of a coronal mass ejection with velocity exceeding the critical one. Geophys. Res. Lett. 35, L22105. DOI. ADS. CrossRefGoogle Scholar
  7. Eselevich, M.V., Eselevich, V.G.: 2009, The formation of a perturbed zone and shock wave excited by a coronal mass ejection. Astron. Rep. 53, 173. DOI. ADS. CrossRefGoogle Scholar
  8. Eselevich, M.V., Eselevich, V.G.: 2011, Some properties of the development of the perturbed zone and shock preceding a coronal mass ejection. Astron. Rep. 55, 1038. DOI. ADS. CrossRefGoogle Scholar
  9. Eselevich, V., Eselevich, M.: 2012, Disturbed zone and piston shock ahead of coronal mass ejection. Astrophys. J. 761, 68. DOI. ADS. CrossRefGoogle Scholar
  10. Eselevich, V.G., Eselevich, M.V.: 2014, Physical differences between the initial phase of the formation of two types of coronal mass ejections. Astron. Rep. 58, 260. DOI. ADS. CrossRefGoogle Scholar
  11. Eselevich, V.G., Eselevich, M.V., Zimovets, I.V., Rudenko, G.V.: 2016, Initial formation of an “impulsive” coronal mass ejection. Astron. Rep. 60, 1016. DOI. ADS. CrossRefGoogle Scholar
  12. Eselevich, V.G., Eselevich, M.V., Zimovets, I.V., Sharykin, I.N.: 2017, Evidence for shock generation in the solar corona in the absence of coronal mass ejections. Astron. Rep. 61, 805. DOI. ADS. CrossRefGoogle Scholar
  13. Gopalswamy, N., Lara, A., Kaiser, M.L., Bougeret, J.-L.: 2001, Near-Sun and near-Earth manifestations of solar eruptions. J. Geophys. Res. 106, 25261. DOI. ADS. CrossRefGoogle Scholar
  14. Gopalswamy, N., Thompson, W.T., Davila, J.M., Kaiser, M.L., Yashiro, S., Mäkelä, P., Michalek, G., Bougeret, J.-L., Howard, R.A.: 2009, Relation between type II bursts and CMEs inferred from STEREO observations. Solar Phys. 259, 227. DOI. ADS. CrossRefGoogle Scholar
  15. Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010, Interplanetary shocks lacking type II radio bursts. Astrophys. J. 710, 1111. DOI. ADS. CrossRefGoogle Scholar
  16. Hochedez, J.-F., Schmutz, W., Stockman, Y., Schühle, U., Benmoussa, A., Koller, S., Haenen, K., Berghmans, D., Defise, J.-M., Halain, J.-P., Theissen, A., Delouille, V., Slemzin, V., Gillotay, D., Fussen, D., Dominique, M., Vanhellemont, F., McMullin, D., Kretzschmar, M., Mitrofanov, A., Nicula, B., Wauters, L., Roth, H., Rozanov, E., Rüedi, I., Wehrli, C., Soltani, A., Amano, H., van der Linden, R., Zhukov, A., Clette, F., Koizumi, S., Mortet, V., Remes, Z., Petersen, R., Nesládek, M., D’Olieslaeger, M., Roggen, J., Rochus, P.: 2006, LYRA, a solar UV radiometer on Proba2. Adv. Space Res. 37, 303. DOI. ADS. CrossRefGoogle Scholar
  17. Howard, T.A., Pizzo, V.J.: 2016, Challenging some contemporary views of coronal mass ejections. I. The case for blast waves. Astrophys. J. 824, 92. DOI. ADS. CrossRefGoogle Scholar
  18. Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, The RHESSI imaging concept. Solar Phys. 210, 61. DOI. ADS. CrossRefGoogle Scholar
  19. Kerdraon, A., Delouis, J.-M.: 1997, The Nançay radioheliograph. In: Trottet, G. (ed.) Coronal Physics from Radio and Space Observations 483, Springer, Berlin, 192. DOI. ADS. CrossRefGoogle Scholar
  20. Kumar, P., Innes, D.E.: 2015, Partial reflection and trapping of a fast-mode wave in solar coronal arcade loops. Astrophys. J. Lett. 803, L23. DOI. ADS. CrossRefGoogle Scholar
  21. Kumar, P., Innes, D.E., Cho, K.-S.: 2016, Flare-generated shock wave propagation through solar coronal arcade loops and an associated type II radio burst. Astrophys. J. 828, 28. DOI. ADS. CrossRefGoogle Scholar
  22. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. CrossRefGoogle Scholar
  23. Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Solar Phys. 210, 3. DOI. ADS. CrossRefGoogle Scholar
  24. Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305. DOI. ADS. CrossRefGoogle Scholar
  25. Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Žic, T.: 2010, Origin of coronal shock waves associated with slow coronal mass ejections. Astrophys. J. 718, 266. DOI. ADS. CrossRefGoogle Scholar
  26. Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Veronig, A.: 2012, Flare-generated type II burst without associated coronal mass ejection. Astrophys. J. 746, 152. DOI. ADS. CrossRefGoogle Scholar
  27. Mann, G., Aurass, H., Klassen, A., Estel, C., Thompson, B.J.: 1999, Coronal transient waves and coronal shock waves. In: Vial, J.-C., Kaldeich-Schü, B. (eds.) 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ESA SP-446, 477. ADS. Google Scholar
  28. Sadykov, V., Zimovets, I.: 2014, Computation of the potential magnetic field in solar active regions. In: Nagendra, K.N., Stenflo, J.O., Qu, Q., Samooprna, M. (eds.) Solar Polarization 7, Astron. Soc. Pacific C.S. 489, 59. ADS. Google Scholar
  29. Sandman, A.W., Aschwanden, M.J., Derosa, M.L., Wülser, J.P., Alexander, D.: 2009, Comparison of STEREO/EUVI loops with potential magnetic field models. Solar Phys. 259, 1. DOI. ADS. CrossRefGoogle Scholar
  30. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI. ADS. CrossRefGoogle Scholar
  31. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADS. CrossRefGoogle Scholar
  32. Schrijver, C.J., De Rosa, M.L., Title, A.M., Metcalf, T.R.: 2005, The nonpotentiality of active-region coronae and the dynamics of the photospheric magnetic field. Astrophys. J. 628, 501. DOI. ADS. CrossRefGoogle Scholar
  33. Su, W., Cheng, X., Ding, M.D., Chen, P.F., Sun, J.Q.: 2015, A type II radio burst without a coronal mass ejection. Astrophys. J. 804, 88. DOI. ADS. CrossRefGoogle Scholar
  34. Vourlidas, A., Howard, R.A., Esfandiari, E., Patsourakos, S., Yashiro, S., Michalek, G.: 2010, Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys. J. 722, 1522. DOI. ADS. CrossRefGoogle Scholar
  35. Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves. Invited review. Solar Phys. 253, 215. DOI. ADS. CrossRefGoogle Scholar
  36. Wagner, W.J., MacQueen, R.M.: 1983, The excitation of type II radio bursts in the corona. Astron. Astrophys. 120, 136. ADS. Google Scholar
  37. Wild, J.P., Smerd, S.F., Weiss, A.A.: 1963, Solar bursts. Annu. Rev. Astron. Astrophys. 1, 291. DOI. ADS. CrossRefGoogle Scholar
  38. Zeldovich, Y.B., Raizer, Y.P.: 1966, Elements of Gasdynamics and the Classical Theory of Shock Waves, Academic Press, New York. ADS. Google Scholar
  39. Zheleznyakov, V.V.: 1970, Radio Emission of the Sun and Planets, Pergamon Press, Oxford. ADS. Google Scholar
  40. Zimovets, I.V., Sadykov, V.M.: 2015, Spatially resolved observations of a coronal type II radio burst with multiple lanes. Adv. Space Res. 56, 2811. DOI. ADS. CrossRefGoogle Scholar
  41. Zimovets, I., Vilmer, N., Chian, A.C.-L., Sharykin, I., Struminsky, A.: 2012, Spatially resolved observations of a split-band coronal type II radio burst. Astron. Astrophys. 547, A6. DOI. ADS. CrossRefGoogle Scholar
  42. Zucca, P., Carley, E.P., Bloomfield, D.S., Gallagher, P.T.: 2014a, The formation heights of coronal shocks from 2D density and Alfvén speed maps. Astron. Astrophys. 564, A47. DOI. ADS. CrossRefGoogle Scholar
  43. Zucca, P., Pick, M., Démoulin, P., Kerdraon, A., Lecacheux, A., Gallagher, P.T.: 2014b, Understanding coronal mass ejections and associated shocks in the solar corona by merging multiwavelength observations. Astrophys. J. 795, 68. DOI. ADS. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of SciencesIrkutskRussia
  2. 2.Space Research Institute (IKI) of Russian Academy of SciencesMoscowRussia
  3. 3.State Key Laboratory of Space WeatherNational Space Science Center (NSSC) of Chinese Academy of SciencesBeijingChina
  4. 4.International Space Science Institute – Beijing (ISSI-BJ)BeijingChina

Personalised recommendations