Advertisement

Solar Physics

, 294:65 | Cite as

Turbulent Heating in the Accelerating Region Using a Multishell Model

  • Andrea VerdiniEmail author
  • Roland Grappin
  • Victor Montagud-Camps
T.I. : Solar Wind 15
Part of the following topical collections:
  1. Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Abstract

Recent studies of turbulence-driven solar winds indicate that fast winds are obtained only at the price of unrealistic bottom boundary conditions: too large wave amplitudes and small frequencies. In this work, the incompressible turbulent dissipation is modeled with a large-scale von Karman–Howarth–Kolmogorov-like phenomenological expression (\(Q_{\text{K41}}^{0}\)). An evaluation of the phenomenology is thus necessary to understand if unrealistic boundary conditions result from physical or model limitations. To assess the validity of the Kolmogorov-like expression, \(Q_{\text{K41}}^{0}\), one needs to compare it to exact heating, which requires describing the cascade in detail. This has been done in the case of homogeneous MHD turbulence, including expansion, but not in the critical accelerating region. To assess the standard incompressible turbulent heating in the accelerating region, we use a reduced MHD model (multishell model) in which the perpendicular turbulent cascade is described by a shell model, allowing to reach a Reynolds number of \(10^{6}\). We first consider the homogeneous and expanding cases, and find that primitive MHD and multishell equations give remarkably similar results. We thus feel free to use the multishell model in the accelerating region. The results indicate that the large-scale phenomenology is inaccurate and it overestimates the heating by a factor at least 20, thus invalidating earlier studies of winds driven by incompressible turbulence. We conclude that realistic 1D wind models cannot be based solely on incompressible turbulence, but probably need an addition of compressible turbulence and shocks to increase the wave reflection and thus the heating.

Keywords

Coronal holes Solar wind Theory Turbulence Magnetohydrodynamics 

Notes

Acknowledgements

This work has been supported by Programme National Soleil-Terre (PNST/INSU/CNRS).

Disclosure of Potential Conflicts of Interest

The authors declare they have no conflicts of interest.

References

  1. Beresnyak, A.: 2012, Basic properties of magnetohydrodynamic turbulence in the inertial range. Mon. Not. Roy. Astron. Soc. 422, 3495. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bruno, R., Carbone, V.: 2013, The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10, 2. DOI. ADSCrossRefGoogle Scholar
  3. Buchlin, E., Velli, M.: 2007, Shell models of RMHD turbulence and the heating of solar coronal loops. Astrophys. J. 662, 701. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Chandran, B.D.G., Dennis, T.J., Quataert, E., Bale, S.D.: 2011, Incorporating kinetic physics into a two-fluid solar-wind model with temperature anisotropy and low-frequency Alfvén-wave turbulence. Astrophys. J. 743, 197. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Cranmer, S.R., van Ballegooijen, A.A., Edgar, R.J.: 2007, Self-consistent coronal heating and solar wind acceleration from anisotropic magnetohydrodynamic turbulence. Astrophys. J. Suppl. Ser. 171, 520. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Del Zanna, L., Matteini, L., Landi, S., Verdini, A., Velli, M.: 2015, Parametric decay of parallel and oblique Alfvén waves in the expanding solar wind. J. Plasma Phys. 81(1), 325810102. DOI. ADS. CrossRefGoogle Scholar
  7. Dmitruk, P., Milano, L.J., Matthaeus, W.H.: 2001, Wave-driven turbulent coronal heating in open field line regions: Nonlinear phenomenological model. Astrophys. J. 548, 482. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Dmitruk, P., Matthaeus, W.H., Milano, L.J., Oughton, S., Zank, G.P., Mullan, D.J.: 2002, Coronal heating distribution due to low-frequency, wave-driven turbulence. Astrophys. J. 575, 571. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Dong, Y., Verdini, A., Grappin, R.: 2014, Evolution of turbulence in the expanding solar wind, a numerical study. Astrophys. J. 793(2), 118. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Giuliani, P., Carbone, V.: 1998, A note on shell models for MHD turbulence. Europhys. Lett. 43, 527. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Gledzer, E.B.: 1973, System of hydrodynamic type admitting two quadratic integrals of motion. Sov. Phys. Dokl. 18, 216. ADS. ADSzbMATHGoogle Scholar
  12. Grappin, R., Velli, M., Mangeney, A.: 1993, Nonlinear wave evolution in the expanding solar wind. Phys. Rev. Lett. 70(1), 2190. ADSCrossRefGoogle Scholar
  13. Hossain, M., Gray, P.C., Pontius, D.H.J., Matthaeus, W.H., Oughton, S.: 1995, Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence. Phys. Fluids 7(1), 2886. DOI. ADSCrossRefzbMATHGoogle Scholar
  14. Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikić, Z., Verdini, A.: 2014, Validating a time-dependent turbulence-driven model of the solar wind. Astrophys. J. 784(2), 120. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Matsumoto, T., Suzuki, T.K.: 2012, Connecting the Sun and the solar wind: The first 2.5-dimensional self-consistent MHD simulation under the Alfvén wave scenario. Astrophys. J. 749, 8. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Matthaeus, W.H., Minnie, J., Breech, B., Parhi, S., Bieber, J., Oughton, S.: 2004, Transport of cross helicity and radial evolution of Alfvénicity in the solar wind. Geophys. Res. Lett. 31(1), L12803. DOI. ADSCrossRefGoogle Scholar
  17. Montagud-Camps, V., Grappin, R., Verdini, A.: 2018, Turbulent heating between 0.2 and 1 AU: A numerical study. Astrophys. J. 853(2), 153. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Nigro, G., Malara, F., Carbone, V., Veltri, P.: 2004, Nanoflares and MHD turbulence in coronal loops: A hybrid shell model. Phys. Rev. Lett. 92(19), 194501. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Perez, J.C., Chandran, B.D.G.: 2013, Direct numerical simulations of reflection-driven, reduced magnetohydrodynamic turbulence from the Sun to the Alfvén critical point. Astrophys. J. 776(2), 124. DOI. ADSCrossRefGoogle Scholar
  20. Politano, H., Pouquet, A.G.: 1998, Von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E, Stat. Phys. 57(1), 21. DOI. ADSCrossRefGoogle Scholar
  21. Shoda, M., Yokoyama, T.: 2016, Nonlinear reflection process of linearly polarized, broadband Alfvén waves in the fast solar wind. Astrophys. J. 820, 123. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018a, A self-consistent model of the coronal heating and solar wind acceleration including compressible and incompressible heating processes. Astrophys. J. 853(2), 190. DOI. ADSCrossRefGoogle Scholar
  23. Shoda, M., Yokoyama, T., Suzuki, T.K.: 2018b, Frequency-dependent Alfvén-wave propagation in the solar wind: Onset and suppression of parametric decay instability. Astrophys. J. 860, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Suzuki, T.K., Inutsuka, S.-i.: 2005, Making the corona and the fast solar wind: A self-consistent simulation for the low-frequency Alfvén waves from the photosphere to 0.3 AU. Astrophys. J. 632(1), L49. DOI. ADSCrossRefGoogle Scholar
  25. Suzuki, T.K., Inutsuka, S.-I.: 2006, Solar winds driven by nonlinear low-frequency Alfvén waves from the photosphere: Parametric study for fast/slow winds and disappearance of solar winds. J. Geophys. Res. Space Phys. 111, A06101. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Tenerani, A., Velli, M.: 2017, Evolving waves and turbulence in the outer corona and inner heliosphere: The accelerating expanding box. Astrophys. J. 843, 26. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Usmanov, A.V., Goldstein, M.L., Matthaeus, W.H.: 2014, Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity. Astrophys. J. 788, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  28. van Ballegooijen, A.A., Asgari-Targhi, M.: 2016, Heating and acceleration of the fast solar wind by Alfvén wave turbulence. Astrophys. J. 821, 106. DOI. ADS. ADSCrossRefGoogle Scholar
  29. van Ballegooijen, A.A., Asgari-Targhi, M.: 2017, Direct and inverse cascades in the acceleration region of the fast solar wind. Astrophys. J. 835, 10. DOI. ADS. ADSCrossRefGoogle Scholar
  30. van der Holst, B., Sokolov, I.V., Meng, X., Jin, M., Manchester, W.B. IV, Tóth, G., Gombosi, T.I.: 2014, Alfvén Wave Solar Model (AWSoM): Coronal heating. Astrophys. J. 782, 81. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Vasquez, B.J., Smith, C.W., Hamilton, K., MacBride, B.T., Leamon, R.J.: 2007, Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J. Geophys. Res. 112(A7), A07101. DOI. ADSCrossRefGoogle Scholar
  32. Verdini, A., Grappin, R.: 2012, Transition from weak to strong cascade in MHD turbulence. Phys. Rev. Lett. 109(2), 025004. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Verdini, A., Grappin, R., Velli, M.: 2012, Coronal heating in coupled photosphere-chromosphere-coronal systems: Turbulence and leakage. Astron. Astrophys. 538, A70. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Verdini, A., Velli, M.: 2007, Alfvén waves and turbulence in the solar atmosphere and solar wind. Astrophys. J. 662, 669. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Verdini, A., Velli, M., Buchlin, É.: 2009, Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700(1), L39. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Verdini, A., Velli, M., Matthaeus, W.H., Oughton, S., Dmitruk, P.: 2010, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708, L116. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Verdini, A., Grappin, R., Pinto, R.F., Velli, M.: 2012, On the origin of the \(1/f\) spectrum in the solar wind magnetic field. Astrophys. J. Lett. 750(2), L33. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Verdini, A., Grappin, R., Hellinger, P., Landi, S., Müller, W.-C.: 2015, Anisotropy of third-order structure functions in MHD turbulence. Astrophys. J. 804(2), 119. DOI. ADS. ADSCrossRefGoogle Scholar
  39. Wang, Y.-M.: 1994, Polar plumes and the solar wind. Astrophys. J. 435, L153. DOI. ADSCrossRefGoogle Scholar
  40. Wang, Y.-M., Grappin, R., Robbrecht, E., Sheeley, N.R. Jr.: 2012, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182. DOI. ADS. ADSCrossRefGoogle Scholar
  41. Woolsey, L.N., Cranmer, S.R.: 2015, Time-dependent turbulent heating of open flux tubes in the chromosphere, corona, and solar wind. Astrophys. J. 811, 136. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Yamada, M., Ohkitani, K.: 1987, Lyapunov spectrum of a chaotic model of three-dimensional turbulence. J. Phys. Soc. Japan 56, 4210. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversitá di FirenzeSesto FiorentinoItaly
  2. 2.Laboratoire de Physique des PlasmasÉcole PolytechniquePalaiseau CedexFrance

Personalised recommendations