Advertisement

Solar Physics

, 294:61 | Cite as

Impacts on Proton Fluxes Observed During Different Interplanetary Conditions

  • Binod AdhikariEmail author
  • Niraj Adhikari
  • Binil Aryal
  • Narayan P. Chapagain
  • Ildiko Horvath
Article

Abstract

Interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs) are the major characteristic events of the solar wind (SW). We used proton flux data with different energy levels provided by the Low Energy Magnetic Spectrometers (LEMS) 120 system of the Electron, Proton and Alpha Monitor (EPAM) for studying different ICME-driven and CIR-driven storms. Our main aim was to find, from the observational results, the nature of the proton flux during solar storms driven by different mechanisms that, in our cases, are related to ICMEs and CIRs, in the interplanetary regions. We analyzed the different parameters provided by the LEMS 120 system and compared them during the different storm types and during a selected quietest day as well. We studied four events: a geomagnetically quiet day, two ICME-driven storms and one CIR-driven storm. We also analyzed the interplanetary magnetic field (IMF) magnitude (\(B_{\mathrm{mag}}\)) and the different SW parameters during all these events. We observed that both the prolonged particle precipitations during CIRs and the intense particle precipitations during ICMEs result in the different nature of the fluxes with different energy levels compared with other parameters such as \(B_{\mathrm{mag}}\), and the SW velocity (\(V_{\mathrm{sw}}\)). Our quiet-period results show that there is a strong correlation between the higher energy proton fluxes and \(B_{\mathrm{mag}}\) and \(V_{\mathrm{sw}}\) and a weak correlation in the case of lower energy protons. Our storm-time results demonstrate that when the storm is either driven by ICMEs or CIRs, the lower energy protons also starts to show positive correlations with \(B_{\mathrm{mag}}\) and \(V_{\mathrm{sw}}\) with a 0 min time lag (TA) during ICMEs and with a \({\approx}\,{-}100~\mbox{min}\) TA during CIRs. During the quiet day, the proton flux observed was due to the perturbations created by ionization and the higher energy of the protons sufficiently weakened. Whereas, the CME speed, the preceding CMEs, and the presence of pre-existing solar energetic particles (SEPs) in the ambient medium, the makeup of CIR-related winds, and the nature of precipitation during both ICMEs and CIRs caused the proton fluxes with different energy levels during storm times.

Keywords

ICMEs CIRs Proton fluxes Interplanetary conditions 

Notes

Acknowledgements

We are grateful to the OMNI Database for providing the data. The interplanetary magnetic field magnitude data and solar wind parameters for this study were obtained from https://omniweb.gsfc.nasa.gov/ . We thank the ACE instrument team and the ACE Science Center for providing the ACE data. We downloaded the proton flux data from http://www.srl.caltech.edu/ACE/ .

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Adhikari, B., Baruwal, P., Chapagain, N.P.: 2017, Analysis of supersubstorm events with reference to polar cap potential and polar cap index. Earth Space Sci. 4, 2. DOI. CrossRefADSGoogle Scholar
  2. Adhikari, B., Dahal, S., Chapagain, N.P.: 2017, Study of field-aligned current (FAC), interplanetary electric field component (\(E_{y}\)), interplanetary magnetic field component (\(B _{z}\)), and northward (\(x\)) and eastward (\(y\)) components of geomagnetic field during supersubstorm. Earth Space Sci. 4, 257. DOI. CrossRefGoogle Scholar
  3. Adhikari, B., Sapkota, N., Baruwal, P., Chapagain, N.P., Braga, C.R.: 2017, Impacts on cosmic-ray intensity observed during geomagnetic disturbances. Solar Phys. 292(10), 149. DOI. CrossRefADSGoogle Scholar
  4. Adhikari, B., Dahal, S., Sapkota, N., Baruwal, P., Bhattarai, B., Khanal, K., Chapagain, N.P.: 2018, Field aligned current and polar cap potential and geomagnetic disturbances: a review of cross correlation analysis. Earth Space Sci. 5(9), 440. DOI. CrossRefADSGoogle Scholar
  5. Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111(A7), A07S05. DOI. CrossRefADSGoogle Scholar
  6. Barbas de Haro, B.F., Elias, A.G., Cnossen, I., de Artigas, M.Z.: 2013, Long-term changes in solar quiet (Sq) geomagnetic variations related to Earth’s magnetic field secular variation. J. Geophys. Res. Space Phys. 118(6), 3712. DOI. CrossRefADSGoogle Scholar
  7. Beutier, T., Boscher, D., France, M.: 1995, SALAMMBO: a three-dimensional simulation of the proton radiation belt. J. Geophys. Res. 100(A9), 17181. DOI. CrossRefADSGoogle Scholar
  8. Bolaji, O.S., Adimula, I.A., Adeniyi, J.O., Yumoto, K.: 2013, Variability of horizontal magnetic field intensity over Nigeria during low solar activity. Earth Moon Planets 110(1–2), 91. DOI. CrossRefADSGoogle Scholar
  9. Borovsky, J.E.: 2016, The plasma structure of coronal hole solar wind: origins and evolution. J. Geophys. Res. 121(6), 5055. DOI. CrossRefGoogle Scholar
  10. Borovsky, J.E., Denton, M.H.: 2006, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111(A7), A07S08. DOI. CrossRefADSGoogle Scholar
  11. Brown, R.R., Driatsky, V.M.: 1973, Further studies of ionospheric and geomagnetic effects of sudden impulses. Planet. Space Sci. 21(11), 1931. DOI. CrossRefADSGoogle Scholar
  12. Brown, R.R., Hartz, T.R., Landmark, B., Leinbach, H., Ortner, J.: 1961, Large-scale electron bombardment of the atmosphere at the sudden commencement of a geomagnetic storm. J. Geophys. Res. 66(4), 1035. DOI. CrossRefADSGoogle Scholar
  13. Brown, R.R., Leinbach, H., Akasofu, S.I., Driatsky, V.M., Schmidt, R.J.: 1972, Quadruple conjugate pair observations of the sudden commencement absorption event on June 17. J. Geophys. Res. 77(28), 5602. DOI. 1965. CrossRefADSGoogle Scholar
  14. Cane, H.V., Reames, D.V., Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93(A9), 9555. DOI. CrossRefADSGoogle Scholar
  15. Cane, H.V., Sheeley, N.R., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92(A9), 9869. DOI. CrossRefADSGoogle Scholar
  16. Chapman, S.: 1919, I. The solar and lunar diurnal variations of terrestrial magnetism. Phil. Trans. Roy. Soc. London 218(561–569), 1. DOI. CrossRefADSGoogle Scholar
  17. Chupp, E.L.: 1988, Solar neutron observations and their relation to solar flare acceleration problems. Solar Phys. 118(1–2), 137. DOI. CrossRefADSGoogle Scholar
  18. Cornwall, J.M.: 1972, Radial diffusion of ionized helium and protons: a probe for magnetospheric dynamics. J. Geophys. Res. 77(10), 1756. DOI. CrossRefADSGoogle Scholar
  19. Dmitriev, A.V., Crosby, N.B., Chao, J.K.: 2005, Interplanetary sources of space weather disturbances in 1997 to 2000. Adv. Space Res. 3(3), 1. DOI. CrossRefGoogle Scholar
  20. Emslie, A.G., Dennis, B.R., Shih, A.Y., Chamberlin, P.C., Mewaldt, R.A., Moore, C.S., et al.: 2012, Global energetics of thirty-eight large solar eruptive events. Astrophys. J. 759(1), 71. DOI. CrossRefADSGoogle Scholar
  21. Fan, C.Y., Pick, M., Pyle, R., Simpson, J.A., Smith, D.R.: 1968, Protons associated with centers of solar activity and their propagation in interplanetary magnetic field regions corotating with the Sun. J. Geophys. Res. 73(5), 1555. DOI. CrossRefADSGoogle Scholar
  22. Finch, I., Lockwood, M.: 2007, Solar wind-magnetosphere coupling functions on timescales of 1 day to 1 year. Ann. Geophys. 25, 495. DOI. CrossRefADSGoogle Scholar
  23. Georgoulis, M.K., Papaioannou, A., Sandberg, I., Anastasiadis, A., Daglis, I.A., Rodríguez-Gasén, R., et al.: 2018, Analysis and interpretation of inner-heliospheric SEP events with the ESA Standard Radiation Environment Monitor (SREM) onboard the INTEGRAL and Rosetta missions. J. Space Weather Space Clim. 8, A40. DOI. CrossRefGoogle Scholar
  24. Gleisner, H., Watermann, J.: 2006, Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectiveness. Adv. Space Res. 4(6), 1. DOI. CrossRefGoogle Scholar
  25. Gold, R.E., Krimigis, S.M., Hawkins, S.E., Haggerty, D.L., Lohr, D.A., Fiore, E., et al.: 1998, Electron, Proton, and Alpha Monitor on the Advanced Composition Explorer spacecraft. Space Sci. Rev. 86(1–4), 541. DOI. CrossRefADSGoogle Scholar
  26. Gonzalez, W.D., Tsurutani, B.T., De Gonzalez, A.L.C.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88(3–4), 529. DOI. CrossRefADSGoogle Scholar
  27. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2003, Coronal mass ejection interaction and particle acceleration during the 2001 April 14–15 events. Adv. Space Res. 32(12), 2613. DOI. CrossRefADSGoogle Scholar
  28. Gopalswamy, N., Nunes, S., Yashiro, S., Howard, R.A.: 2004, Variability of solar eruptions during cycle 23. Adv. Space Res. 34(2), 391. DOI. CrossRefADSGoogle Scholar
  29. Gosling, J.T., Pizzo, V.J.: 1999, Formation and evolution of corotating interaction regions and their three-dimensional structure. In: Corotating Interaction Regions, Springer, Dordrecht, 21. DOI. CrossRefGoogle Scholar
  30. Guido, R.M.D.: 2016, Coronal mass ejections during geomagnetic storms on Earth. J. Astrophys. Astron. 5(2), 19. DOI. CrossRefGoogle Scholar
  31. Hudson, H.S.: 2011, Global properties of solar flares. Space Sci. Rev. 158(1), 5. DOI. CrossRefADSGoogle Scholar
  32. Illing, R.M.E., Hundhausen, A.T.: 1986, Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. J. Geophys. Res. 91(A10), 10951. DOI. CrossRefADSGoogle Scholar
  33. Kahler, S.W., Hildner, E., Van Hollebeke, M.A.I.: 1978, Prompt solar proton events and coronal mass ejections. Solar Phys. 57(2), 429. DOI. CrossRefADSGoogle Scholar
  34. Katz, R.W.: 1988, Use of cross correlations in the search for teleconnections. Int. J. Climatol. 8(3), 241. DOI. CrossRefGoogle Scholar
  35. Kennel, C.F., Scarf, F.L., Coroniti, F.V., Russell, C.T., Wenzel, K.P., Sanderson, T.R., et al.: 1984, Plasma and energetic particle structure upstream of a quasi-parallel interplanetary shock. J. Geophys. Res. 89(A7), 5419. DOI. CrossRefADSGoogle Scholar
  36. Kozyra, J.U., Rasmussen, C.E., Miller, R.H., Lyons, L.R.: 1994, Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss: 1. Diffusion coefficients and timescales. J. Geophys. Res. 99(A3), 4069. DOI. CrossRefADSGoogle Scholar
  37. Lazutin, L.L., Kuznetsov, S.N., Podorol’skii, A.N.: 2007, Dynamics of the radiation belt formed by solar protons during magnetic storms. Geomagn. Aeron. 47(2), 175. DOI. CrossRefADSGoogle Scholar
  38. Longden, N., Denton, M.H., Honary, F.: 2008, Particle precipitation during ICME-driven and CIR-driven geomagnetic storms. J. Geophys. Res. 113(A6), A06205. DOI. CrossRefADSGoogle Scholar
  39. Malandraki, O.E., Lario, D., Lanzerotti, L.J., Sarris, E.T., Geranios, A., Tsiropoula, G.: 2005, October/November 2003 interplanetary coronal mass ejections: ACE/EPAM solar energetic particle observations. J. Geophys. Res. 110(A9), A09S06. DOI. CrossRefADSGoogle Scholar
  40. McCracken, K.G., Rao, U.R., Bukata, R.P., Keath, E.: 1971, The decay phase of solar flare events. Solar Phys. 18(1), 100. DOI. CrossRefADSGoogle Scholar
  41. Mewaldt, R.A., Stone, E.C., Vogt, R.E.: 1979, Characteristics of the spectra of protons and alpha particles in recurrent events at 1 AU. Geophys. Res. Lett. 6(7), 589. DOI. CrossRefADSGoogle Scholar
  42. Nakada, M.P., Dungey, J.W., Hess, W.N.: 1965, On the origin of outer-belt protons: 1. J. Geophys. Res. 70(15), 3529. DOI. CrossRefADSGoogle Scholar
  43. Ngwira, C.M., Pulkkinen, A., Wilder, F.D., Crowley, G.: 2013, Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Adv. Space Res. 11(3), 121. DOI. CrossRefGoogle Scholar
  44. Palmer, I.D., Gosling, J.T.: 1978, Shock-associated energetic proton events at large heliocentric distances. J. Geophys. Res. 83(A5), 2037. DOI. CrossRefADSGoogle Scholar
  45. Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111(3–4), 267. DOI. CrossRefADSGoogle Scholar
  46. Richardson, I.G., Cliver, E.W., Cane, H.V.: 2000, Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res. 105(A8), 18203. DOI. CrossRefADSGoogle Scholar
  47. Sergeev, V.A., Chernyaeva, S.A., Apatenkov, S.V., Ganushkina, N.Y., Dubyagin, S.V.: 2015, Energy-latitude dispersion patterns near the isotropy boundaries of energetic protons. Ann. Geophys. 33, 1059. DOI. CrossRefADSGoogle Scholar
  48. Sheeley, N.R., Howard, R.A., Koomen, M.J., Michels, D.J., Schwenn, R., Muehlhaeuser, K.H., Rosenbauer, H.: 1985, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90(A1), 163. DOI. CrossRefADSGoogle Scholar
  49. Shibata, K., Magara, T.: 2011, Solar flares: magnetohydrodynamic processes. Solar Phys. 8(1), 6. DOI. CrossRefGoogle Scholar
  50. Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophys. Res. Lett. 3(3), 137. DOI. CrossRefADSGoogle Scholar
  51. Smolin, S.V.: 2010, Effect of magnetospheric convection on the energy distribution of protons from the Earth radiation belts. Geomagn. Aeron. 50(3), 298. DOI. CrossRefADSGoogle Scholar
  52. Søraas, F., Aarsnes, K., Lundblad, J., Evans, D.S.: 1999, Enhanced pitch angle scattering of protons at mid-latitudes during geomagnetic storms. Phys. Chem. Earth, Part C Solar-Terr. Planet. Sci. 24(1–3), 287. DOI. CrossRefGoogle Scholar
  53. Spjeldvik, W.N.: 1977, Equilibrium structure of equatorially mirroring radiation belt protons. J. Geophys. Res. 82(19), 2801. DOI. CrossRefADSGoogle Scholar
  54. Stauning, P.: 1996, Investigations of ionospheric radio wave absorption processes using imaging riometer techniques. J. Atmos. Terr. Phys. 58(6), 753. DOI. CrossRefADSGoogle Scholar
  55. Tsurutani, B.T., Lin, R.P.: 1985, Acceleration of \({>}\,47~\mbox{keV}\) ions and \({>}\,2~\mbox{keV}\) electrons by interplanetary shocks at 1 AU. J. Geophys. Res. 90(A1), 1. DOI. CrossRefGoogle Scholar
  56. Tsurutani, B.T., Gould, T., Goldstein, B.E., Gonzalez, W.D., Sugiura, M.: 1990, Interplanetary Alfvén waves and auroral (substorm) activity: IMP 8. J. Geophys. Res. 95, 2241. DOI. CrossRefADSGoogle Scholar
  57. Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L., Guarnieri, F.L., Gopalswamy, N., Grande, M., et al.: 2006, Corotating solar wind streams and recurrent geomagnetic activity: a review. J. Geophys. Res. 111(A7), A07S01. DOI. CrossRefGoogle Scholar
  58. Tsurutani, B.T., Verkhoglyadova, O.P., Mannucci, A.J., Lakhina, G.S., Li, G., Zank, G.P.: 2009, A brief review of “solar flare effects” on the ionosphere. Radio Sci. 44(1), RS0A17. DOI. CrossRefGoogle Scholar
  59. Tylka, A.J., Lee, M.A.: 2006, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646(2), 1319. DOI. CrossRefADSGoogle Scholar
  60. Tylka, A.J., Cohen, C.M.S., Dietrich, W.F., Lee, M.A., Maclennan, C.G., Mewaldt, R.A., et al.: 2005, Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625(1), 474. DOI. CrossRefADSGoogle Scholar
  61. Vacaresse, A., Boscher, D., Bourdarie, S., Blanc, M., Sauvaud, J.A.: 1999, Modeling the high-energy proton belt. J. Geophys. Res. 104(A12), 28601. DOI. CrossRefADSGoogle Scholar
  62. Yizengaw, E., Moldwin, M.B., Komjathy, A., Mannucci, A.J.: 2006, Unusual topside ionospheric density response to the November 2003 superstorm. J. Geophys. Res. 111(A2), A02308. DOI. CrossRefADSGoogle Scholar
  63. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123(1–3), 31. DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhysicsSt. Xavier’s CollegeKathmanduNepal
  2. 2.Central Department of PhysicsTribhuvan UniversityKirtipurNepal
  3. 3.Department of PhysicsTribhuvan UniversityKathmanduNepal
  4. 4.Department of PhysicsTribhuvan UniversityKirtipurNepal
  5. 5.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations