Solar Physics

, 294:62 | Cite as

Forward Modeling of the Type III Radio Burst Exciter

  • Peijin Zhang
  • Chuanbing WangEmail author
  • Lin Ye
  • Yuming Wang


In this work, we propose a forward-modeling method to study the trajectory and speed of the interplanetary (IP) Type-III radio burst exciter. The model assumes that the source of an IP Type-III radio burst moves outward from the Sun following the Parker spiral field line. Using the arrival time of the radio waves at multiple spacecraft, we are able to determine the trajectory of the radio source in the Ecliptic plane, and its outward speed, as well as the injection time and longitude of the associated electron beam near the solar surface that triggers the Type-III radio burst. For the application of this method, we design a system to gather the arrival time of the radio wave from the radio dynamic spectra observed by Solar Terrestrial Relations Observatory (STEREO)/WAVES and Wind/WAVES. Then the system forward models the trajectory and speed of the radio burst exciter iteratively according to an evaluation function. Finally, we present a survey of four Type-III radio bursts that are well discussed in the literature. The modeled trajectories of the radio source are consistent with the previous radio-triangulation results, the longitude of the associated active region, or the location of Langmuir waves excited by the electron beam.


Solar radio bursts Type III bursts Dynamic spectrum Waves propagation 



We are grateful to the STEREO and Wind mission teams, and NASA’s Space Physics Data Facility for providing the data needed for this study. The research was supported by the National Nature Science Foundation of China (41574167 and 41174123) and the Fundamental Research Funds for the Central Universities (WK2080000077). Y. Wang is supported by the grants from NSFC (41574165, 41774178 and 41842037).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Alvarez, H., Haddock, F., Lin, R.P.: 1972, Evidence for electron excitation of type III radio burst emission. Solar Phys. 26, 468. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Arge, C., Pizzo, V.: 2000, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 105, 10465. ADS, DOI. ADSCrossRefGoogle Scholar
  3. Bougeret, J.-L., Kaiser, M.L., Kellogg, P., Manning, R., Goetz, K., Monson, S., Monge, N., Friel, L., Meetre, C., Perche, C., et al.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Cecconi, B., Bonnin, X., Hoang, S., Maksimovic, M., Bale, S., Bougeret, J.-L., Goetz, K., Lecacheux, A., Reiner, M., Rucker, H., et al.: 2008, STEREO/WAVES goniopolarimetry. Space Sci. Rev. 136, 549. ADS, DOI. ADSCrossRefGoogle Scholar
  5. Chen, B., Bastian, T.S., White, S.M., Gary, D.E., Perley, R., Rupen, M., Carlson, B.: 2013, Tracing electron beams in the sun’s corona with radio dynamic imaging spectroscopy. Astrophys. J. Lett. 763, L21. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Chen, L., Wu, D.J., Zhao, G.Q., Tang, J.F.: 2017, A self-consistent mechanism for electron cyclotron maser emission and its application to Type III solar radio bursts. J. Geophys. Res. 122, 35. DOI. ADS. CrossRefGoogle Scholar
  7. Chen, B., Yu, S., Battaglia, M., Farid, S., Savcheva, A., Reeves, K.K., Krucker, S., Bastian, T., Guo, F., Tassev, S.: 2018, Magnetic reconnection null points as the origin of semirelativistic electron beams in a solar jet. Astrophys. J. 866, 62. ADS, DOI. ADSCrossRefGoogle Scholar
  8. Dresing, N., Gómez-Herrero, R., Klassen, A., Heber, B., Kartavykh, Y., Dröge, W.: 2012, The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event. Solar Phys. 281, 281. ADS, DOI. ADSCrossRefGoogle Scholar
  9. Dulk, G., Goldman, M., Steinberg, J., Hoang, S.: 1987, The speeds of electrons that excite solar radio bursts of Type III. Astron. Astrophys. 173, 366. ADS, ADSGoogle Scholar
  10. Eberhart, R., Kennedy, J.: 1995, A new optimizer using particle swarm theory. In: Micro Machine and Human Science, 1995. MHS’95, Proc. Sixth Internat. Symp., IEEE Press, New York, 39. CrossRefGoogle Scholar
  11. Fainberg, J., Evans, L.G., Stone, R.: 1972, Radio tracking of solar energetic particles through interplanetary space. Science 178, 743. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Ginzburg, V., Zhelezniakov, V.: 1958, On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Astron. Zh. 35, 694. ADS, ADSGoogle Scholar
  13. Gómez-Herrero, R., Dresing, N., Klassen, A., Heber, B., Lario, D., Agueda, N., Malandraki, O., Blanco, J., Rodríguez-Pacheco, J., Banjac, S.: 2015, Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Kaiser, M.L., Kucera, T., Davila, J., Cyr, O.S., Guhathakurta, M., Christian, E.: 2008, The stereo mission: an introduction. Space Sci. Rev. 136, 5. ADS, DOI. ADSCrossRefGoogle Scholar
  15. Kontar, E., Yu, S., Kuznetsov, A., Emslie, A., Alcock, B., Jeffrey, N., Melnik, V., Bian, N., Subramanian, P.: 2017, Imaging spectroscopy of solar radio burst fine structures. Nat. Commun. 8, 1515. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Krupar, V., Santolik, O., Cecconi, B., Maksimovic, M., Bonnin, X., Panchenko, M., Zaslavsky, A.: 2012, Goniopolarimetric inversion using svd: an application to type III radio bursts observed by stereo. J. Geophys. Res. 117, 6101. ADS, DOI. CrossRefGoogle Scholar
  17. Krupar, V., Maksimovic, M., Santolik, O., Cecconi, B., Kruparova, O.: 2014, Statistical survey of type III radio bursts at long wavelengths observed by the solar terrestrial relations observatory (stereo). Solar Phys. 289, 4633. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Krupar, V., Kontar, E.P., Soucek, J., Santolik, O., Maksimovic, M., Kruparova, O.: 2015, On the speed and acceleration of electron beams triggering interplanetary type III radio bursts. Astron. Astrophys. 580, A137. ADS, DOI. ADSCrossRefGoogle Scholar
  19. Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Martínez-Oliveros, J.C., Lindsey, C., Bale, S.D., Krucker, S.: 2012, Determination of electromagnetic source direction as an eigenvalue problem. Solar Phys. 279, 153. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Parker, E.N.: 1958, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Reid, H.A., Kontar, E.P.: 2018, Solar type III radio burst time characteristics at LOFAR frequencies and the implications for electron beam transport. Astron. Astrophys. 614, A69. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Reiner, M., MacDowall, R.: 2015, Electron exciter speeds associated with interplanetary type III solar radio bursts. Solar Phys. 290, 2975. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Reiner, M., Stone, R.: 1986, A new method for reconstructing type III trajectories. Solar Phys. 106, 397. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Reiner, M., Fainberg, J., Kaiser, M., Stone, R.: 1998, Type III radio source located by Ulysses/wind triangulation. J. Geophys. Res. 103, 1923. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Reiner, M.J., Goetz, K., Fainberg, J., Kaiser, M., Maksimovic, M., Cecconi, B., Hoang, S., Bale, S., Bougeret, J.-L.: 2009, Multipoint observations of solar type III radio bursts from stereo and wind. Solar Phys. 259, 255. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Shi, Y., Russell, C.E.: 2001, Particle swarm optimization: developments, applications and resources. In: Evolutionary Computation, 2001. Proc 2001 Congr. 1, IEEE Press, New York, 81. Google Scholar
  29. Steinberg, J., Aubier-Giraud, M., Leblanc, Y., Boischot, A.: 1971, Coronal scattering, absorption and refraction of solar radiobursts. Astron. Astrophys. 10, 362. ADS. ADSGoogle Scholar
  30. Steinberg, J., Hoang, S., Lecacheux, A., Aubier, M., Dulk, G.: 1984, Type III radio bursts in the interplanetary medium – the role of propagation. Astron. Astrophys. 140, 39. ADS, ADSGoogle Scholar
  31. Stone, R.G., Bougeret, J.L., Caldwell, J., Canu, P., de Conchy, Y., Cornilleau-Wehrlin, N., Desch, M.D., Fainberg, J., Goetz, K., Goldstein, M.L., et al.: 1992, The unified radio and plasma wave investigation. Astron. Astrophys. Suppl. Ser. 92, 291. ADS. ADSGoogle Scholar
  32. Wang, C.B.: 2015, A scenario for the fine structures of solar type IIIb radio bursts based on electron cyclotron maser emission. Astrophys. J. 806, 34. ADS, DOI. ADSCrossRefGoogle Scholar
  33. Wang, L., Lin, R., Krucker, S., Mason, G.M.: 2012, A statistical study of solar electron events over one solar cycle. Astrophys. J. 759, 69. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Wu, C.S., Wang, C.B., Yoon, P.H., Zheng, H.N., Wang, S.: 2002, Generation of type III solar radio bursts in the low corona by direct amplification. Astrophys. J. 575, 1094. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Zhang, P.J., Wang, C.B., Ye, L.: 2018, A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data. Astron. Astrophys. 618, A165. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Geospace Environment, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CAS Center for the Excellence in Comparative PlanetologyHefeiChina

Personalised recommendations