Solar Physics

, 294:56 | Cite as

Kinematics and Energetics of the EUV Waves on 11 April 2013

  • Aarti FularaEmail author
  • Ramesh Chandra
  • P. F. Chen
  • Ivan Zhelyazkov
  • A. K. Srivastava
  • Wahab Uddin


In this study, we present the observations of extreme-ultraviolet (EUV) waves associated with an M6.5 flare on 2013 April 11. The event was observed by Solar Dynamics Observatory (SDO) in different EUV channels. The flare was also associated with a halo CME and type II radio bursts. We observed both fast and slow components of the EUV wave. The speed of the fast component, which is identified as a fast-mode MHD wave, varies in the range from \(600\mbox{ to }640~\mbox{km}\,\mbox{s}^{-1}\), whereas the speed of the slow-component is \({\approx}\,140~\mbox{km}\,\mbox{s}^{-1}\). We observed the unusual phenomenon that, as the fast-component EUV wave passes through two successive magnetic quasi-separatrix layers (QSLs), two stationary wave fronts are formed locally. We propose that part of the outward-propagating fast-mode EUV wave is converted into slow-mode magnetohydrodynamic waves, which are trapped in local magnetic field structures, forming successive stationary fronts. Along the other direction, the fast-component EUV wave also creates oscillations in a coronal loop lying \({\approx}\,225~\mbox{Mm}\) away from the flare site. We have computed the energy of the EUV wave to be of the order of \(10^{20}~\mbox{J}\).


Waves, magnetohydrodynamic Waves, propagation Corona, radio emission 



We would like to thank the referee for the useful comments and suggestions that helped us to improve the manuscript. We also acknowledge the use of SDO and GONG data. PFC was supported by the Chinese grants NSFC 11533005, U1731241 and Jiangsu 333 Project (No. BRA2017359). AF and RC acknowledge the support from the ISRO/RESPOND project. The work of IZh and RC was supported by the Bulgarian Science Fund under Indo–Bulgarian bilateral project DNTS/INDIA 01/7.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an H\(\upalpha\) Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. DOI. ADS CrossRefGoogle Scholar
  2. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P.: 2007, Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. Lett. 656, L101. DOI. ADS. CrossRefADSGoogle Scholar
  3. Attrill, G.D.R., Engell, A.J., Wills-Davey, M.J., Grigis, P., Testa, P.: 2009, Hinode/XRT and STEREO observations of a diffuse coronal “wave”-coronal mass ejection-dimming event. Astrophys. J. 704, 1296. DOI. ADS. CrossRefADSGoogle Scholar
  4. Ballai, I.: 2007, Global coronal seismology. Solar Phys. 246, 177. DOI. ADS. CrossRefADSGoogle Scholar
  5. Ballai, I., Erdélyi, R., Pintér, B.: 2005, On the nature of coronal EIT waves. Astrophys. J. Lett. 633, L145. DOI. ADS. CrossRefADSGoogle Scholar
  6. Benz, A.O., Thejappa, G.: 1988, Radio emission of coronal shock waves. Astron. Astrophys. 202, 267. ADS. ADSGoogle Scholar
  7. Biesecker, D.A., Thompson, B.J.: 2002, Can EIT waves be used to predict halo CME properties? In: American Astronomical Society Meeting Abstracts #200, Bulletin of the American Astronomical Society 34, 695. Google Scholar
  8. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS. CrossRefADSGoogle Scholar
  9. Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53. DOI. ADS. CrossRefADSGoogle Scholar
  10. Chandra, R., Schmieder, B., Mandrini, C.H., Démoulin, P., Pariat, E., Török, T., Uddin, W.: 2011, Homologous flares and magnetic field topology in active region NOAA 10501 on 20 November 2003. Solar Phys. 269, 83. DOI. ADS. CrossRefADSGoogle Scholar
  11. Chandra, R., Chen, P.F., Fulara, A., Srivastava, A.K., Uddin, W.: 2016, Peculiar stationary EUV wave fronts in the eruption on 2011 May 11. Astrophys. J. 822, 106. DOI. ADS. CrossRefADSGoogle Scholar
  12. Chandra, R., Chen, P.F., Joshi, R., Joshi, B., Schmieder, B.: 2018, Observations of two successive EUV waves and their mode conversion. Astrophys. J. 863, 101. DOI. ADS. CrossRefADSGoogle Scholar
  13. Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112. DOI. ADS. CrossRefADSGoogle Scholar
  14. Chen, P.F.: 2016, Global Coronal Waves, Geophysical Monograph Series 216, American Geophysical Union, Washington DC, 381. DOI. ADS. CrossRefGoogle Scholar
  15. Chen, P.: 2017, The continued debate on solar coronal EUV waves. Sci. China Ser. G, Phys. Mech. Astron. 60, 29631. DOI. ADS. CrossRefGoogle Scholar
  16. Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202. DOI. ADS. CrossRefADSGoogle Scholar
  17. Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. DOI. ADS. CrossRefADSGoogle Scholar
  18. Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99. DOI. ADS. CrossRefADSGoogle Scholar
  19. Chen, P.F., Fang, C., Chandra, R., Srivastava, A.K.: 2016, Can a fast-mode EUV wave generate a stationary front? Solar Phys. 291, 3195. DOI. ADS. CrossRefADSGoogle Scholar
  20. Cheng, X., Zhang, J., Olmedo, O., Vourlidas, A., Ding, M.D., Liu, Y.: 2012, Investigation of the formation and separation of an extreme-ultraviolet wave from the expansion of a coronal mass ejection. Astrophys. J. Lett. 745, L5. DOI. ADS. CrossRefADSGoogle Scholar
  21. Cohen, O., Attrill, G.D.R., Manchester, W.B. IV, Wills-Davey, M.J.: 2009, Numerical simulation of an EUV coronal wave based on the 2009 February 13 CME event observed by STEREO. Astrophys. J. 705, 587. DOI. ADS. CrossRefADSGoogle Scholar
  22. Dai, Y., Auchère, F., Vial, J.-C., Tang, Y.H., Zong, W.G.: 2010, Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys. J. 708, 913. DOI. ADS. CrossRefADSGoogle Scholar
  23. Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291. DOI. ADS. CrossRefADSGoogle Scholar
  24. Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107. DOI. ADS. CrossRefADSGoogle Scholar
  25. Delannée, C., Hochedez, J.-F., Aulanier, G.: 2007, Stationary parts of an EIT and Moreton wave: a topological model. Astron. Astrophys. 465, 603. DOI. ADS. CrossRefADSGoogle Scholar
  26. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADS. CrossRefADSGoogle Scholar
  27. Downs, C., Roussev, I.I., van der Holst, B., Lugaz, N., Sokolov, I.V.: 2012, Understanding SDO/AIA observations of the 2010 June 13 EUV wave event: direct insight from a global thermodynamic MHD simulation. Astrophys. J. 750, 134. DOI. CrossRefADSGoogle Scholar
  28. Gallagher, P.T., Long, D.M.: 2011, Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev. 158, 365. DOI. ADS. CrossRefADSGoogle Scholar
  29. Gilbert, H.R., Daou, A.G., Young, D., Tripathi, D., Alexander, D.: 2008, The filament-Moreton wave interaction of 2006 December 6. Astrophys. J. 685, 629. DOI. ADS. CrossRefADSGoogle Scholar
  30. Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W.T., Jones, S., McAteer, R.T.J., Wuelser, J.-P., Freeland, S., Howard, R.A.: 2009, EUV wave reflection from a coronal hole. Astrophys. J. Lett. 691, L123. DOI. ADS. CrossRefADSGoogle Scholar
  31. Guo, Y., Ding, M.D., Chen, P.F.: 2015, Slow patchy extreme-ultraviolet propagating fronts associated with fast coronal magneto-acoustic waves in solar eruptions. Astrophys. J. Suppl. 219, 36. DOI. ADS. CrossRefADSGoogle Scholar
  32. Guo, Y., Erdélyi, R., Srivastava, A.K., Hao, Q., Cheng, X., Chen, P.F., Ding, M.D., Dwivedi, B.N.: 2015, Magnetohydrodynamic seismology of a coronal loop system by the first two modes of standing kink waves. Astrophys. J. 799, 151. DOI. ADS. CrossRefADSGoogle Scholar
  33. Harra, L.K., Sterling, A.C.: 2003, Imaging and spectroscopic investigations of a solar coronal wave: properties of the wave front and associated erupting material. Astrophys. J. 587, 429. DOI. ADS. CrossRefADSGoogle Scholar
  34. Janvier, M.: 2017, Three-dimensional magnetic reconnection and its application to solar flares. J. Plasma Phys. 83, 535830101. DOI. ADS. CrossRefGoogle Scholar
  35. Jin, M., Ding, M.D., Chen, P.F., Fang, C., Imada, S.: 2009, Coronal mass ejection induced outflows observed with Hinode/EIS. Astrophys. J. 702, 27. DOI. ADS. CrossRefADSGoogle Scholar
  36. Joshi, B., Kushwaha, U., Veronig, A.M., Dhara, S.K., Shanmugaraju, A., Moon, Y.-J.: 2017, Formation and eruption of a flux rope from the sigmoid active region NOAA 11719 and associated M6.5 flare: a multi-wavelength study. Astrophys. J. 834, 42. DOI. ADS. CrossRefADSGoogle Scholar
  37. Kienreich, I.W., Muhr, N., Veronig, A.M., Berghmans, D., De Groof, A., Temmer, M., Vršnak, B., Seaton, D.B.: 2013, Solar TErrestrial Relations Observatory-A (STEREO-A) and PRoject for on-board autonomy 2 (PROBA2) quadrature observations of reflections of three EUV waves from a coronal hole. Solar Phys. 286, 201. DOI. ADS. CrossRefADSGoogle Scholar
  38. Kondo, T., Isobe, T., Igi, S., Watari, S., Tokimura, M.: 1995, The Hiraiso Radio Spectrograph (HiRAS) for monitoring solar radio bursts. J. Commun. Res. Lab. 42(1), 111. ADS. Google Scholar
  39. Kumar, P., Cho, K.-S., Chen, P.F., Bong, S.-C., Park, S.-H.: 2013, Multiwavelength study of a solar eruption from AR NOAA 11112: II. Large-scale coronal wave and loop oscillation. Solar Phys. 282, 523. DOI. CrossRefADSGoogle Scholar
  40. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. CrossRefADSGoogle Scholar
  41. Liu, W., Ofman, L.: 2014, Advances in observing various coronal EUV waves in the SDO era and their seismological applications (invited review). Solar Phys. 289, 3233. DOI. ADS. CrossRefADSGoogle Scholar
  42. Long, D.M., Gallagher, P.T., McAteer, R.T.J., Bloomfield, D.S.: 2008, The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680, L81. DOI. ADS. CrossRefADSGoogle Scholar
  43. Long, D.M., Baker, D., Williams, D.R., Carley, E.P., Gallagher, P.T., Zucca, P.: 2015, The energetics of a global shock wave in the low solar corona. Astrophys. J. 799, 224. DOI. ADS. CrossRefADSGoogle Scholar
  44. Long, D.M., Bloomfield, D.S., Chen, P.F., Downs, C., Gallagher, P.T., Kwon, R.-Y., Vanninathan, K., Veronig, A.M., Vourlidas, A., Vršnak, B., Warmuth, A., Žic, T.: 2017, Understanding the physical nature of coronal “EIT waves”. Solar Phys. 292, 7. DOI. ADS. CrossRefADSGoogle Scholar
  45. Lulić, S., Vršnak, B., Žic, T., Kienreich, I.W., Muhr, N., Temmer, M., Veronig, A.M.: 2013, Formation of coronal shock waves. Solar Phys. 286, 509. DOI. ADS. CrossRefADSGoogle Scholar
  46. Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI. ADS. CrossRefADSGoogle Scholar
  47. Mann, G., Klassen, A., Aurass, H., Classen, H.T.: 2003, Development of shocks waves in the solar corona and the interplanetary space. In: Solar Wind Ten, American Institute of Physics Conference Series 679, 612. DOI. ADS. CrossRefGoogle Scholar
  48. Mei, Z., Udo, Z., Lin, J.: 2012, Numerical experiments of disturbance to the solar atmosphere caused by eruptions. Sci. China Ser. G, Phys. Mech. Astron. 55, 1316. DOI. ADS. CrossRefADSGoogle Scholar
  49. Moses, D., Clette, F., Delaboudinière, J.-P., Artzner, G.E., Bougnet, M., Brunaud, J., Carabetian, C., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Newmark, J., Thompson, B., Maucherat, A., Portier-Fozzani, F., Berghmans, D., Cugnon, P., van Dessel, E.L., Gabryl, J.R.: 1997, EIT observations of the extreme ultraviolet sun. Solar Phys. 175, 571. DOI. ADS. CrossRefADSGoogle Scholar
  50. Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the Solar-Terrestrial Relations Observatory/Extreme Ultraviolet Imager. Astrophys. J. 739, 89. DOI. ADS. CrossRefADSGoogle Scholar
  51. Muhr, N., Veronig, A.M., Kienreich, I.W., Vršnak, B., Temmer, M., Bein, B.M.: 2014, Statistical analysis of large-scale EUV waves observed by STEREO/EUVI. Solar Phys. 289, 4563. DOI. ADS. CrossRefADSGoogle Scholar
  52. Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983. DOI. ADS. CrossRefADSGoogle Scholar
  53. Nitta, N.V., Schrijver, C.J., Title, A.M., Liu, W.: 2013, Large-scale coronal propagating fronts in solar eruptions as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory – an ensemble study. Astrophys. J. 776, 58. DOI. ADS. CrossRefADSGoogle Scholar
  54. Ouyang, Y., Zhou, Y.H., Chen, P.F., Fang, C.: 2017, Chirality and magnetic configurations of solar filaments. Astrophys. J. 835, 94. DOI. ADS. CrossRefADSGoogle Scholar
  55. Patsourakos, S., Vourlidas, A.: 2009, “Extreme ultraviolet waves” are waves: first quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182. DOI. ADS. CrossRefADSGoogle Scholar
  56. Patsourakos, S., Vourlidas, A.: 2012, On the nature and genesis of EUV waves: a synthesis of observations from SOHO, STEREO, SDO, and Hinode (invited review). Solar Phys. 281, 187. DOI. ADS. CrossRefADSGoogle Scholar
  57. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. CrossRefADSGoogle Scholar
  58. Schmidt, J.M., Ofman, L.: 2010, Global simulation of an Extreme Ultraviolet Imaging Telescope wave. Astrophys. J. 713, 1008. DOI. ADS. CrossRefADSGoogle Scholar
  59. Schmieder, B., Aulanier, G., Vršnak, B.: 2015, Flare-CME models: an observational perspective (invited review). Solar Phys. 290, 3457. DOI. CrossRefADSGoogle Scholar
  60. Sterling, A.C., Hudson, H.S.: 1997, Yohkoh SXT observations of X-ray “dimming” associated with a halo coronal mass ejection. Astrophys. J. Lett. 491, L55. DOI. CrossRefADSGoogle Scholar
  61. Su, W., Cheng, X., Ding, M.D., Chen, P.F., Ning, Z.J., Ji, H.S.: 2016, Investigating the conditions of the formation of a Type II radio burst on 2014 January 8. Astrophys. J. 830, 70. DOI. ADS. CrossRefADSGoogle Scholar
  62. Thompson, B.J., Myers, D.C.: 2009, A catalog of coronal “EIT wave” transients. Astrophys. J. 183, 225. DOI. ADS. CrossRefADSGoogle Scholar
  63. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465. DOI. ADS. CrossRefADSGoogle Scholar
  64. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. CrossRefADSGoogle Scholar
  65. Vemareddy, P., Mishra, W.: 2015, A full study on the Sun–Earth connection of an Earth-directed CME magnetic flux rope. Astrophys. J. 814, 59. DOI. ADS. CrossRefADSGoogle Scholar
  66. Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113. DOI. ADS. CrossRefADSGoogle Scholar
  67. Wang, Y.-M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, L89. DOI. CrossRefADSGoogle Scholar
  68. Wang, T., Yan, Y., Wang, J., Kurokawa, H., Shibata, K.: 2002, The large-scale coronal field structure and source region features for a halo coronal mass ejection. Astrophys. J. 572, 580. DOI. ADS. CrossRefADSGoogle Scholar
  69. Warmuth, A.: 2007, Large-scale Waves and Shocks in the Solar Corona, Lecture Notes in Physics 725, Springer, Berlin, 107. Google Scholar
  70. Warmuth, A.: 2010, Large-scale waves in the solar corona: the continuing debate. Adv. Space Res. 45, 527. DOI. ADS. CrossRefADSGoogle Scholar
  71. Warmuth, A.: 2015, Large-scale globally propagating coronal waves. Living Rev. Solar Phys. 12, 3. DOI. ADS. CrossRefADSGoogle Scholar
  72. Webb, D.F., Lepping, R.P., Burlaga, L.F., DeForest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M.: 2000, The origin and development of the May 1997 magnetic cloud. J. Geophys. Res. 105, 27251. DOI. ADS. CrossRefADSGoogle Scholar
  73. Wills-Davey, M.J., Attrill, G.D.R.: 2009, EIT waves: a changing understanding over a solar cycle. Space Sci. Rev. 149, 325. DOI. ADS. CrossRefADSGoogle Scholar
  74. Wills-Davey, M.J., Thompson, B.J.: 1999, Observations of a propagating disturbance in TRACE. Solar Phys. 190, 467. DOI. ADS. CrossRefADSGoogle Scholar
  75. Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089. DOI. ADS. CrossRefADSGoogle Scholar
  76. Zheng, R., Chen, Y., Feng, S., Wang, B., Song, H.: 2018, An extreme-ultraviolet wave generating upward secondary waves in a streamer-like solar structure. Astrophys. J. Lett. 858, L1. DOI. ADS. CrossRefADSGoogle Scholar
  77. Zhou, X-p., Liang, H-f.: 2017, A study on the fast solar corona extreme-ultraviolet wave associated with a coronal mass ejection. Chin. J. Astron. Astrophys. 41, 224. DOI. ADS. CrossRefADSGoogle Scholar
  78. Zhukov, A.N.: 2011, EIT wave observations and modeling in the STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1096. DOI. ADS. CrossRefADSGoogle Scholar
  79. Zhukov, A.N., Auchère, F.: 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs. Astron. Astrophys. 427, 705. DOI. ADS. CrossRefADSGoogle Scholar
  80. Zong, W., Dai, Y.: 2017, Mode conversion of a solar extreme-ultraviolet wave over a coronal cavity. Astrophys. J. Lett. 834, L15. DOI. ADS. CrossRefADSGoogle Scholar
  81. Zucca, P., Carley, E.P., Bloomfield, D.S., Gallagher, P.T.: 2014, The formation heights of coronal shocks from 2D density and Alfvén speed maps. Astron. Astrophys. 564, A47. DOI. ADS. CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Physics, DSB CampusKumaun UniversityNainitalIndia
  2. 2.School of Astronomy & Space ScienceNanjing UniversityNanjingChina
  3. 3.Key Laboratory of Modern Astronomy & Astrophysics (Nanjing University)Ministry of EducationNanjingChina
  4. 4.Faculty of PhysicsSofia UniversitySofiaBulgaria
  5. 5.Department of PhysicsIndian Institute of Technology (BHU)VaranasiIndia
  6. 6.Aryabhatta Research Institute of Observational SciencesNainitalIndia

Personalised recommendations