Advertisement

Solar Physics

, 294:64 | Cite as

North–South Asymmetry in Solar Activity and Solar Cycle Prediction, IV: Prediction for Lengths of Upcoming Solar Cycles

  • J. JavaraiahEmail author
Article

Abstract

We analyzed the daily sunspot-group data reported by the Greenwich Photoheliographic Results (GPR) during the period 1874 – 1976 and Debrecen Photoheliographic Data (DPD) during the period 1977 – 2017 and studied North–South asymmetry in the maxima and minima of the Solar Cycles 12 – 24. We derived the time series of the 13-month smoothed monthly mean corrected whole-spot areas of the sunspot groups in the Sun’s whole sphere (WSGA), northern hemisphere (NSGA), and southern hemisphere (SSGA). From these smoothed time series we obtained the values of the maxima and minima, and the corresponding epochs, of the WSGA, NSGA, and SSGA Cycles 12 – 24. We find that there exists a 44 – 66 years periodicity in the North–South asymmetry of the minimum. A long periodicity (130 – 140 years) may exist in the asymmetry of the maximum. A statistically significant correlation exists between the maximum of SSGA Cycle \(n\) and the rise time of WSGA Cycle \(n+2\). A reasonably significant correlation also exists between the maximum of WSGA Cycle \(n\) and the decline time of WSGA Cycle \(n+2\). These relations suggest that the solar dynamo carries memory over at least three solar cycles. Using these relations we obtained the values \(11.7\pm 0.15~\text{years}\), \(11.2\pm 0.2~\text{years}\), and \(11.45\pm 0.3~\text{years}\) for the lengths of WSGA Cycles 24, 25, and 26, respectively, and hence, July 2020, October 2031, and March 2043 for the minimum epochs (start dates) of WSGA Cycles 25, 26, and 27, respectively. We also obtained May 2025 and March 2036 for the maximum epochs of WSGA Cycles 25 and 26, respectively. It seems during the late Maunder Minimum sunspot activity was absent around the epochs of the maxima of the NSGA-cycles and the minima of the SSGA-cycles, and some activity was present at the epochs of the maxima of some SSGA-cycles and the minima of some NSGA-cycles.

Keywords

Sun: Dynamo Sun: surface magnetism Sun: activity Sun: sunspots (Sun:) space weather (Sun:) solar Terrestrial relations 

Notes

Acknowledgments

The author thanks the anonymous referee for useful comments and suggestions. The author acknowledges the work of all the people contribute and maintain the GPR and DPD Sunspot databases. The sunspot-number data are provided by WDC-SILSO, Royal Observatory of Belgium, Brussels.

Disclosure of Potential Conflicts of Interest

The author declares that he has no conflicts of interest.

References

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: 2012, Astron. Astrophys. 548, A88. DOI. CrossRefADSGoogle Scholar
  2. Belucz, B., Dikpati, M.: 2013, Astrophys. J. 779, 4. DOI. CrossRefADSGoogle Scholar
  3. Carbonell, M., Oliver, R., Ballester, J.L.: 1993, Astron. Astrophys. 274, 497. ADSGoogle Scholar
  4. Chowdhury, P., Choudhary, D.P., Gosain, S.: 2013, Astrophys. J. 768, 188. DOI. CrossRefADSGoogle Scholar
  5. Chowdhury, P., Gokhale, M.H., Singh, J., Moon, Y.-J.: 2016, Astrophys. Space Sci. 361, 54. DOI. CrossRefADSGoogle Scholar
  6. Cionco, R.G., Compagnucci, R.H.: 2012, Adv. Space Res. 50, 1434. DOI. CrossRefADSGoogle Scholar
  7. DeRosa, M.L., Brun, A.S., Hoeksema, J.T.: 2012, Astrophys. J. 757, 96. DOI. CrossRefADSGoogle Scholar
  8. Dikpati, M., Gilman, P.A.: 2006, Astrophys. J. 649, 498. DOI. CrossRefADSGoogle Scholar
  9. Dikpati, M., Gilman, P.A., de Toma, G.: 2008, Astrophys. J. Lett. 673, L99. DOI. CrossRefADSGoogle Scholar
  10. Foukal, P.V.: 1972, Astrophys. J. 173, 439. DOI. CrossRefADSGoogle Scholar
  11. Gao, P.X.: 2016, Astrophys. J. 830, 140. DOI. CrossRefADSGoogle Scholar
  12. Gilman, P.A., Foukal, P.V.: 1979, Astrophys. J. 229, 1179. DOI. CrossRefADSGoogle Scholar
  13. Gnevyshev, M.N.: 1963, Soviet Astron. 7, 311. ADSGoogle Scholar
  14. Győri, L., Baranyi, T., Ludmány, A.: 2010 In: Proc. Intern. Astron. Union 6, Sympo. S273, 403. DOI. CrossRefGoogle Scholar
  15. Hathaway, D.H.: 2015, Liv. Rev. Solar Phys. 12(4), 1. DOI. CrossRefADSGoogle Scholar
  16. Hathaway, D.H., Wilson, R.M., Reichmann, E.J.: 1994, Solar Phys. 151, 177. DOI. CrossRefADSGoogle Scholar
  17. Hiremath, K.M.: 2002, Astron. Astrophys. 386, 674. DOI. CrossRefADSGoogle Scholar
  18. Howard, R.F.: 1996, Annu. Rev. Astron. Astrophys. 34, 75. DOI. CrossRefADSGoogle Scholar
  19. Hoyt, D.V., Schatten, K.H.: 1997, The Role of the Sun in Climate Change, Oxford University Press, New York, 279 pp. DOI. CrossRefGoogle Scholar
  20. Javaraiah, J.: 2005, Mon. Not. Roy. Astron. Soc. 362, 1311. DOI. CrossRefADSGoogle Scholar
  21. Javaraiah, J.: 2007, Mon. Not. Roy. Astron. Soc. 377, L34. DOI. CrossRefADSGoogle Scholar
  22. Javaraiah, J.: 2008, Solar Phys. 252, 419. DOI. CrossRefADSGoogle Scholar
  23. Javaraiah, J.: 2012, Solar Phys. 281, 827. DOI. CrossRefADSGoogle Scholar
  24. Javaraiah, J.: 2015, New Astron. 34, 54. DOI. CrossRefADSGoogle Scholar
  25. Javaraiah, J.: 2016, Astrophys. Space Sci. 361, 208. DOI. CrossRefADSGoogle Scholar
  26. Javaraiah, J.: 2017, Solar Phys. 292, 172. DOI. CrossRefADSGoogle Scholar
  27. Javaraiah, J., Bertello, L., Ulrich, R.K.: 2005, Solar Phys. 232, 25. DOI. CrossRefADSGoogle Scholar
  28. Javaraiah, J., Gokhale, M.H.: 1997a, Solar Phys. 170, 389. DOI. CrossRefADSGoogle Scholar
  29. Javaraiah, J., Gokhale, M.H.: 1997b, Astron. Astrophys. 327, 795. ADSGoogle Scholar
  30. Juckett, D.A.: 2003, Astron. Astrophys. 399, 731. DOI. CrossRefADSGoogle Scholar
  31. Kane, R.P.: 2007, Solar Phys. 243, 205. DOI. CrossRefADSGoogle Scholar
  32. Komitov, B., Sello, S., Duchlev, P., Dechev, M., Penev, K., Koleva, K.: 2016, Bulg. Astron. J. 25, 78. Google Scholar
  33. Mandal, S., Banerjee, D.: 2016, Astrophys. J. Lett. 830, L33. DOI. CrossRefADSGoogle Scholar
  34. Norton, A.A., Gallagher, J.C.: 2010, Solar Phys. 261, 193. DOI. CrossRefADSGoogle Scholar
  35. Obridko, V.N., Shelting, B.D.: 2008, Solar Phys. 248, 191. DOI. CrossRefADSGoogle Scholar
  36. Pesnell, W.D.: 2008, Solar Phys. 252, 209. DOI. CrossRefADSGoogle Scholar
  37. Pesnell, W.D., Schatten, K.H.: 2018, Solar Phys. 293, 112. DOI. CrossRefADSGoogle Scholar
  38. Ramesh, K.B., Rohini, V.S.: 2008, Astrophys. J. Lett. 686, L41. DOI. CrossRefADSGoogle Scholar
  39. Ravindra, B., Javaraiah, J.: 2015, New Astron. 39, 55. DOI. CrossRefADSGoogle Scholar
  40. Sarp, V., Kilcik, A., Yarchyshyan, V., Rozelot, J.P., Ozguc, A.: 2018, Mon. Not. Roy. Astron. Soc. 481, 2981. DOI. CrossRefADSGoogle Scholar
  41. Shetye, J., Tripathi, D., Dikpati, M.: 2015, Astrophys. J. 799, 220. DOI. CrossRefADSGoogle Scholar
  42. Sivaraman, K.R., Sivaraman, H., Gupta, S.S., Howard, R.: 2003, Solar Phys. 214, 65. DOI. CrossRefADSGoogle Scholar
  43. Sokoloff, D., Nesme-Ribes, E.: 1994, Astron. Astrophys. 288, 293. ADSGoogle Scholar
  44. Solanki, S.K., Krivova, N.A., Schüssler, M., Fligge, M.: 2002, Astron. Astrophys. 396, 1029. DOI. CrossRefADSGoogle Scholar
  45. Stefani, F., Giesecke, A., Weber, N., Weier, T.: 2016, Solar Phys. 291, 2197. DOI. CrossRefADSGoogle Scholar
  46. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Geophys. Res. Lett. 32, L01104. DOI. CrossRefADSGoogle Scholar
  47. Tan, B.: 2011, Astrophys. Space Sci. 332, 65. DOI. CrossRefADSGoogle Scholar
  48. Upton, L.A., Hathaway, D.H.: 2018, Geophys. Res. Lett. 45, 8091. DOI. CrossRefADSGoogle Scholar
  49. Verma, V.K.: 1993, Astrophys. J. 403, 797. DOI. CrossRefADSGoogle Scholar
  50. Vizoso, G., Ballester, J.L.: 1990, Astron. Astrophys. 229, 540. ADSGoogle Scholar
  51. Waldmeier, M.: 1935, Astron. Mitt. Zurich 14(133), 105. ADSGoogle Scholar
  52. Waldmeier, M.: 1939, Astron. Mitt. Zurich 14(138), 470. ADSGoogle Scholar
  53. Wilson, I.R.G.: 2013, Pattern Recog. Phys. 1, 147. DOI. CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.BengaluruIndia

Personalised recommendations