Advertisement

Solar Physics

, 294:55 | Cite as

Temporal Evolution of Heavy-Ion Spectra in Solar Energetic Particle Events

  • Donald J. DoranEmail author
  • Silvia Dalla
  • Peter Zelina
Article

Abstract

Solar energetic particles (SEPs) are released into the heliosphere by solar flares and coronal mass ejections (CMEs). They are mostly protons, with smaller amounts of heavy ions from helium to iron, and lesser amounts of species heavier than iron. The spectra of heavy ions have been previously studied mostly by using the fluence of the particles in an event-integrated spectrum in a small number of spectral snapshots. In this article, we analyze the temporal evolution of the heavy-ion spectra using two large SEP events (27 January 2012 and 7 January 2014) from the Solar TErrestrial Relations Observatory (STEREO) era using Advanced Composition Explorer (ACE) Solar Isotope Spectrometer (SIS) and Ultra Low Energy Isotope Spectrometer (ULEIS), Energetic Particles: Acceleration, Composition and Transport (EPACT) onboard Wind, and the STEREO-A (Ahead) and -B (Behind) Low-Energy Telescope (LET) and Suprathermal Ion Telescope (SIT) instruments, taking a large number of snapshots covering the temporal evolution of the event. We find large differences in the spectra of the ions after the main flux enhancement in terms of the grouping of similar species, but also in terms of the location of the instruments. Although it is somewhat less noticeable than in the case of the temporal evolution of protons (Doran and Dalla, Solar Phys.291, 2071, 2016), we observe a wave-like pattern travelling through the heavy ion spectra from the highest energies to the lowest, creating an “arch” structure that later straightens into a power law after 18 to 24 hours.

Keywords

Cosmic rays, solar Energetic particles, abundances Energetic particles, propagation 

Notes

Acknowledgements

We thank the instrument teams for providing the data used in this study. We acknowledge use of the VEPO analysis tool as well as data and services provided by SEPEM and SEPSERVER. S. Dalla acknowledges support from STFC grant ST/M00760X/1. P. Zelina acknowledges support from the project VEGA 2/0004/16.

Disclosure of Potential Conflict of Interests

The authors declare that they have no conflicts of interest.

References

  1. Aarnio, A.N., Stassun, K.G., Hughes, W.J., McGregor, S.L.: 2011, Solar flares and coronal mass ejections: a statistically determined flare flux–CME mass correlation. Solar Phys. 268, 195. DOI. ADS. CrossRefADSGoogle Scholar
  2. Cane, H.V., Reames, D.V., von Rosenvinge, T.T.: 1988, The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 93, 9555. DOI. ADS. CrossRefADSGoogle Scholar
  3. Cliver, E.W.: 2009, A revised classification scheme for solar energetic particle events. Cent. Eur. Astrophys. Bull. 33, 253. ADS. ADSGoogle Scholar
  4. Cohen, C.M.S., Mason, G.M., Stone, E.C., Mewaldt, R.A., Leske, R.A., Desai, M.I., Cummings, A.C., von Rosenvinge, T.T., Wiedenbeck, M.E.: 2005, Solar energetic particle spectra and composition in the October/November 2003 events. In: Acharya, B.S., Gupta, S., Jagadeesan, P., Jain, A., Karthikeyan, S., Morris, S., Tonwar, S. (eds.) Internat. Cosmic Ray Conf., Tata Institute of Fundamental Research, Mumbai, 311. ADS. Google Scholar
  5. Compagnino, A., Romano, P., Zuccarello, F.: 2017, A statistical study of CME properties and of the correlation between flares and CMEs over Solar Cycles 23 and 24. Solar Phys. 292, 5. DOI. ADS. CrossRefADSGoogle Scholar
  6. Correia, E., Makhmutov, V., Raulin, J.P., Makita, K.: 2013, Mid- and low-latitude response of the ionosphere to solar proton events on January 2012. J. Phys. CS-409, 012186. DOI. ADS. CrossRefGoogle Scholar
  7. Crosby, N., Heynderickx, D., Jiggens, P., Aran, A., Sanahuja, B., Truscott, P., Lei, F., Jacobs, C., Poedts, S., Gabriel, S., Sandberg, I., Glover, A., Hilgers, A.: 2015, SEPEM: a tool for statistical modelling the solar energetic particle environment. Space Weather 13, 406. DOI. CrossRefADSGoogle Scholar
  8. Dalla, S., Agueda, N.: 2010, Role of latitude of source region in solar energetic particle events. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth Internat. Solar Wind Conf. AIP, CP-1216, 613. DOI. ADS. CrossRefGoogle Scholar
  9. Dalla, S., Marsh, M.S., Battarbee, M.: 2017, Solar energetic particle drifts and the energy dependence of 1 AU charge states. Astrophys. J. 834, 167. DOI. ADS. CrossRefADSGoogle Scholar
  10. Dalla, S., Marsh, M.S., Laitinen, T.: 2015, Drift-induced deceleration of solar energetic particles. Astrophys. J. 808, 62. DOI. ADS. CrossRefADSGoogle Scholar
  11. Dalla, S., Balogh, A., Krucker, S., Posner, A., Müller-Mellin, R., Anglin, J.D., Hofer, M.Y., Marsden, R.G., Sanderson, T.R., Heber, B., Zhang, M., McKibben, R.B.: 2003, Characterization of SEP events at high heliographic latitudes. In: Velli, M., Bruno, R., Malara, F. (eds.) Solar Wind Ten: Proc. Tenth Internat. Solar Wind Conf. AIP, CP-679, 656. DOI. ADS. CrossRefGoogle Scholar
  12. Desai, M.I., Mason, G.M., Gold, R.E., Krimigis, S.M., Cohen, C.M.S., Mewaldt, R.A., Mazur, J.E., Dwyer, J.R.: 2006, Heavy-ion elemental abundances in large solar energetic particle events and their implications for the seed population. Astrophys. J. 649, 470. DOI. ADS. CrossRefADSGoogle Scholar
  13. Desai, M.I., Mason, G.M., Dayeh, M.A., Ebert, R.W., Mccomas, D.J., Li, G., Cohen, C.M.S., Mewaldt, R.A., Schwadron, N.A., Smith, C.W.: 2016, Spectral properties of large gradual solar energetic particle events. I. Fe, O, and seed material. Astrophys. J. 816, 68. DOI. ADS. CrossRefADSGoogle Scholar
  14. Doran, D.J., Dalla, S.: 2016, Temporal evolution of solar energetic particle spectra. Solar Phys. 291, 2071. DOI. ADS. CrossRefADSGoogle Scholar
  15. Frahm, R.A., Howard, T., DeForest, C., Odstrcil, D., Kallio, E., Mckenna-Lawler, S., Barabash, S., Winningham, J.D., Sharber, J.R., Elliott, H.A.: 2013, Plasma characteristic determination during the coronal mass ejection associated with the January 27, 2012 solar storm. In: EGU Gen. Ass. Conf. Abst., 14062. ADS. Google Scholar
  16. Gómez-Herrero, R., Dresing, N., Klassen, A., Heber, B., Lario, D., Agueda, N., Malandraki, O.E., Blanco, J.J., Rodríguez-Pacheco, J., Banjac, S.: 2015, Circumsolar energetic particle distribution on 2011 November 3. Astrophys. J. 799, 55. DOI. ADS. CrossRefADSGoogle Scholar
  17. Gopalswamy, N.: 2012, Energetic particle and other space weather events of Solar Cycle 24. In: Hu, Q., Li, G., Zank, G.P., Ao, X., Verkhoglyadova, O., Adams, J.H. (eds.) Space Weather: The Space Radiation Environment: 1th Annu. Internat. Astrophys. Conf. AIP, CP-1500, 14. DOI. ADS. CrossRefGoogle Scholar
  18. Joshi, N.C., Uddin, W., Srivastava, A.K., Chandra, R., Gopalswamy, N., Manoharan, P.K., Aschwanden, M.J., Choudhary, D.P., Jain, R., Nitta, N.V., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., Kayshap, P., Awasthi, A.K., Dwivedi, V.C., Mahalakshmi, K.: 2013, A multiwavelength study of eruptive events on January 23, 2012 associated with a major solar energetic particle event. Adv. Space Res. 52, 1. DOI. ADS. CrossRefADSGoogle Scholar
  19. Kallenrode, M.-B.: 2004, Space Physics: An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres, Springer, Berlin. ADS. CrossRefGoogle Scholar
  20. Kallenrode, M.-B., Wibberenz, G., Kunow, H., Müller-Mellin, R., Stolpovskii, V., Kontor, N.: 1993, Multi-spacecraft observations of particle events and interplanetary shocks during November/December 1982. Solar Phys. 147, 377. DOI. ADS. CrossRefADSGoogle Scholar
  21. Kóta, J.: 1979, Drift – the essential process in losing energy. In: Miyake, S. (ed.) Internat. Cosmic Ray Conf. 3, The Institute for Cosmic Ray Research, University of Tokyo, Tokyo, 13. ADS. Google Scholar
  22. Laitinen, T., Kopp, A., Effenberger, F., Dalla, S., Marsh, M.S.: 2016, Solar energetic particle access to distant longitudes through turbulent field-line meandering. Astron. Astrophys. 591, A18. DOI. ADS. CrossRefADSGoogle Scholar
  23. Lario, D., Roelof, E.C., Decker, R.B.: 2014, Longitudinal dependence of SEP peak intensities as evidence of CME-driven shock particle acceleration. In: Hu, Q., Zank, G.P. (eds.) Outstanding Problems in Heliophysics: From Coronal Heating to the Edge of the Heliosphere CS-484, Astron. Soc. Pacific, San Francisco, 98. ADS. Google Scholar
  24. Lario, D., Aran, A., Gómez-Herrero, R., Dresing, N., Heber, B., Ho, G.C., Decker, R.B., Roelof, E.C.: 2013, Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 767, 41. DOI. ADS. CrossRefADSGoogle Scholar
  25. Lario, D., Raouafi, N.E., Kwon, R.-Y., Zhang, J., Gómez-Herrero, R., Dresing, N., Riley, P.: 2014, The solar energetic particle event on 2013 April 11: an investigation of its solar origin and longitudinal spread. Astrophys. J. 797, 8. DOI. ADS. CrossRefADSGoogle Scholar
  26. Li, G., Zank, G.P., Verkhoglyadova, O., Mewaldt, R.A., Cohen, C.M.S., Mason, G.M., Desai, M.I.: 2009, Shock geometry and spectral breaks in large SEP events. Astrophys. J. 702, 998. DOI. ADS. CrossRefADSGoogle Scholar
  27. Martirosyan, H.S.: 2005, Classification of solar events. I. Classification according to knee energy in energy ion spectra. Astrophysics 48, 208. DOI. ADS. CrossRefADSGoogle Scholar
  28. Mason, G.M., Mazur, J.E., Dwyer, J.R.: 2002, A new heavy ion abundance enrichment pattern in 3He-rich solar particle events. Astrophys. J. Lett. 565, L51. DOI. ADS. CrossRefADSGoogle Scholar
  29. Mays, M.L., Thompson, B.J., Jian, L.K., Colaninno, R.C., Odstrcil, D., Möstl, C., Temmer, M., Savani, N.P., Collinson, G., Taktakishvili, A., MacNeice, P.J., Zheng, Y.: 2015, Propagation of the 7 January 2014 CME and resulting geomagnetic non-event. Astrophys. J. 812, 145. DOI. ADS. CrossRefADSGoogle Scholar
  30. Mewaldt, R.A., Looper, M.D., Cohen, C.M.S., Haggerty, D.K., Labrador, A.W., Leske, R.A., Mason, G.M., Mazur, J.E., von Rosenvinge, T.T.: 2012, Energy spectra, composition, and other properties of ground-level events during Solar Cycle 23. Space Sci. Rev. 171, 97. DOI. ADS. CrossRefADSGoogle Scholar
  31. Park, J., Innes, D.E., Bucik, R., Moon, Y.-J.: 2013, The source regions of solar energetic particles detected by widely separated spacecraft. Astrophys. J. 779, 184. DOI. ADS. CrossRefADSGoogle Scholar
  32. Parker, E.N.: 1965, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9. DOI. ADS. CrossRefADSGoogle Scholar
  33. Reames, D.V.: 1995, Solar energetic particles: a paradigm shift. Rev. Geophys. 33, 585. DOI. ADS. CrossRefADSGoogle Scholar
  34. Reames, D.V.: 1998, Solar energetic particles: sampling coronal abundances. Space Sci. Rev. 85, 327. DOI. ADS. CrossRefADSGoogle Scholar
  35. Reames, D.V.: 1999, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413. DOI. ADS. CrossRefADSGoogle Scholar
  36. Reames, D.V.: 2014, Element abundances in solar energetic particles and the solar corona. Solar Phys. 289, 977. DOI. ADS. CrossRefADSGoogle Scholar
  37. Reames, D.V., Barbier, L.M., Ng, C.K.: 1996, The spatial distribution of particles accelerated by coronal mass ejection–driven shocks. Astrophys. J. 466, 473. DOI. ADS. CrossRefADSGoogle Scholar
  38. Reames, D.V., Ng, C.K.: 2004, Heavy-element abundances in solar energetic particle events. Astrophys. J. 610, 510. DOI. ADS. CrossRefADSGoogle Scholar
  39. Reames, D.V., Ng, C.K., Tylka, A.J.: 2001, Heavy ion abundances and spectra and the large gradual solar energetic particle event of 2000 July 14. Astrophys. J. Lett. 548, L233. DOI. ADS. CrossRefADSGoogle Scholar
  40. Reames, D.V., Ng, C.K., Tylka, A.J.: 2013, Spatial distribution of solar energetic particles in the inner heliosphere. Solar Phys. 285, 233. DOI. ADS. CrossRefADSGoogle Scholar
  41. Reames, D.V., Barbier, L.M., Von Rosenvinge, T.T., Mason, G.M., Mazur, J.E., Dwyer, J.R.: 1997, Energy spectra of ions accelerated in impulsive and gradual solar events. Astrophys. J. 483, 515. ADS. CrossRefADSGoogle Scholar
  42. Richardson, I.G., von Rosenvinge, T.T., Cane, H.V., Christian, E.R., Cohen, C.M.S., Labrador, A.W., Leske, R.A., Mewaldt, R.A., Wiedenbeck, M.E., Stone, E.C.: 2014, >25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Solar Phys. 289, 3059. DOI. CrossRefADSGoogle Scholar
  43. Rodríguez-Gasén, R., Aran, A., Sanahuja, B., Jacobs, C., Poedts, S.: 2014, Variation of proton flux profiles with the observer’s latitude in simulated gradual SEP events. Solar Phys. 289, 1745. DOI. ADS. CrossRefADSGoogle Scholar
  44. Ruffolo, D.: 1995, Effect of adiabatic deceleration on the focused transport of solar cosmic rays. Astrophys. J. 442, 861. DOI. ADS. CrossRefADSGoogle Scholar
  45. Shanmugaraju, A., Moon, Y.-J., Vršnak, B.: 2011, Correlation between CME and flare parameters (with and without Type II Bursts). Solar Phys. 270, 273. DOI. ADS. CrossRefADSGoogle Scholar
  46. Thakur, N., Gopalswamy, N., Xie, H., Mäkelä, P., Yashiro, S., Akiyama, S., Davila, J.M.: 2014, Ground level enhancement in the 2014 January 6 solar energetic particle event. Astrophys. J. Lett. 790, L13. DOI. ADS. CrossRefADSGoogle Scholar
  47. Tylka, A.J., Lee, M.A.: 2006, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319. DOI. ADS. CrossRefADSGoogle Scholar
  48. Vainio, R., Valtonen, E., Heber, B., Malandraki, O.E., Papaioannou, A., Klein, K.-L., Afanasiev, A., Agueda, N., Aurass, H., Battarbee, M., Braune, S., Dröge, W., Ganse, U., Hamadache, C., Heynderickx, D., Huttunen-Heikinmaa, K., Kiener, J., Kilian, P., Kopp, A., Kouloumvakos, A., Maisala, S., Mishev, A., Miteva, R., Nindos, A., Oittinen, T., Raukunen, O., Riihonen, E., Rodríguez-Gasén, R., Saloniemi, O., Sanahuja, B., Scherer, R., Spanier, F., Tatischeff, V., Tziotziou, K., Usoskin, I.G., Vilmer, N.: 2013, The first SEPServer event catalogue 68-MeV solar proton events observed at 1 AU in 1996 – 2010. J. Space Weather Space Clim. 3(27), A12. DOI. ADS. CrossRefGoogle Scholar
  49. Vršnak, B.: 2016, Solar eruptions: the CME–flare relationship. Astron. Nachr. 337, 1002. DOI. ADS. CrossRefADSGoogle Scholar
  50. Watanabe, K., Shimizu, T., Masuda, S., Ichimoto, K., Ohno, M.: 2013, Emission height and temperature distribution of white-light emission observed by Hinode/SOT from the 2012 January 27 X-class solar flare. Astrophys. J. 776, 123. DOI. ADS. CrossRefADSGoogle Scholar
  51. Wibberenz, G., Cane, H.V.: 1993, Multi-spacecraft observations of particles and shocks in the inner heliosphere. In: Leahy, D.A., Hicks, R.B., Venkatesan, D. (eds.) Internat. Cosmic Ray Conf. 3, World Scientific, Calgary, 274. ADS. Google Scholar
  52. Wiedenbeck, M.E., Mason, G.M., Cohen, C.M.S., Nitta, N.V., Gómez-Herrero, R., Haggerty, D.K.: 2013, Observations of solar energetic particles from 3He-rich events over a wide range of heliographic longitude. Astrophys. J. 762, 54. DOI. ADS. CrossRefADSGoogle Scholar
  53. Zelina, P., Dalla, S., Cohen, C.M.S., Mewaldt, R.A.: 2017, Time evolution of elemental ratios in solar energetic particle events. Astrophys. J. 835, 71. DOI. ADS. CrossRefADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Central LancashirePrestonUK
  2. 2.Astronomical InstituteSlovak Academy of SciencesTatranská LomnicaSlovakia

Personalised recommendations