Solar Physics

, 294:31 | Cite as

Solar Terrestrial Relations Observatory (STEREO) Observations of Stream Interaction Regions in 2007 – 2016: Relationship with Heliospheric Current Sheets, Solar Cycle Variations, and Dual Observations

  • L. K. JianEmail author
  • J. G. Luhmann
  • C. T. Russell
  • A. B. Galvin


We have conducted a survey of 575 slow-to-fast stream interaction regions (SIRs) using Solar Terrestrial Relations Observatory (STEREO) A and B data, analyzing their properties while extending a Level-3 data product through 2016. Among 518 pristine SIRs, 54% are associated with heliospheric current sheet (HCS) crossings, and 34% are without any HCS crossing. The other 12% of the SIRs often occur in association with magnetic sectors shorter than three days. The SIRs with HCS crossings have slightly slower speeds but higher maximum number densities, magnetic-field strengths, dynamic pressures, and total pressures than the SIRs without an HCS. The iron charge state is higher throughout the SIRs with an HCS than the SIRs without an HCS, by about \(1/3\) charge unit. In contrast with the comparable phases of Solar Cycle 23, slightly more SIRs and higher recurrence rates are observed in the years 2009 – 2016 of Cycle 24, with a lower HCS association rate, possibly attributed to persistent equatorial coronal holes and more pseudo-streamers in this recent cycle. The solar-wind speed, peak magnetic field, and peak pressures of SIRs are all lower in this cycle, but the weakening is less than for the comparable background solar-wind parameters. Before STEREO-B lost contact in October 2014, 151 SIR pairs were observed by the twin spacecraft. Of the dual observations, the maximum speed is the best correlated of the plasma parameters. We have obtained a sample of plasma-parameter differences analogous to those that would be observed by a mission at Lagrange points 4 or 5. By studying several cases with large discrepancies between the dual observations, we investigate the effects of HCS relative location, tilt of stream interface, and small transients on the SIR properties. To resolve the physical reasons for the variability of SIR structures, mesoscale multi-point observations and time-dependent solar-wind modeling are ultimately required.


Solar wind STEREO mission Stream interaction Corotating interaction region Solar Cycle Shock 



L.K. Jian is supported by NASA’s Science Mission Directorate as part of the STEREO project, NASA’s Living with a Star and Heliophysics Supporting Research programs. L.K. Jian thanks P. Démoulin, N. Lugaz, and X. Zhou for the helpful discussions. C.T. Russell and J.G. Luhmann appreciate the support of NASA grant NNX15AG09G for IMPACT investigation. A.B. Galvin is supported by NASA grants NNX15AU01G and 80NSSC17K0556 for PLASTIC investigation. We are grateful to the STEREO mission team and NASA’s Space Physics Data Facility for providing the data needed for this study.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Arge, C., Henney, C., Koller, J., Compeau, C., Young, S., MacKenzie, D., Fay, J., Harvey, A.: 2010, In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth Int. Solar Wind Conf. CP-1216, AIP, Melville, 343. DOI. CrossRefGoogle Scholar
  2. Arge, C.N., Henney, C.J., Gonzalez-Hernandez, I., Toussaint, W.A., Koller, J., Godinez, H.C.: 2013, In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., et al. (eds.) Solar Wind 13: Proc. 13th Int. Solar Wind Conf., CS-1539, AIP, Melville, 11. DOI. CrossRefGoogle Scholar
  3. Bavassano, B., Woo, R., Bruno, R.: 1997, Geophys. Res. Lett. 24, 1655. DOI. ADSCrossRefGoogle Scholar
  4. Belcher, J.W., Davis, L. Jr.: 1971, J. Geophys. Res. 76, 3534. DOI. ADSCrossRefGoogle Scholar
  5. Borovsky, J.E., Denton, M.H.: 2013, J. Geophys. Res. 118, 5506. DOI. CrossRefGoogle Scholar
  6. Chi, Y., Shen, C., Wang, Y., Xu, M., Ye, P., Wang, S.: 2016, Solar Phys. 291, 2419. DOI. ADSCrossRefGoogle Scholar
  7. Crooker, N.U., McPherron, R.L., Owens, M.J.: 2014, J. Geophys. Res. 119, 4157. DOI. CrossRefGoogle Scholar
  8. Crooker, N.U., Huang, C.-L., Lamassa, S.M., Larson, D.E., Kahler, S.W., Spence, H.E.: 2004a, J. Geophys. Res. 109, A03107. DOI. ADSCrossRefGoogle Scholar
  9. Crooker, N.U., Kahler, S.W., Larson, D.E., Lin, R.P.: 2004b, J. Geophys. Res. 109, A03108. DOI. ADSCrossRefGoogle Scholar
  10. Crooker, N.U., Antiochos, S.K., Zhao, X., Neugebauer, M.: 2012, J. Geophys. Res. 117, A04104. DOI. ADSCrossRefGoogle Scholar
  11. Feldman, W.C., Asbridge, J.R., Bame, S.J., Fenimore, E.E., Gosling, J.T.: 1981, J. Geophys. Res. 86, 5408. DOI. ADSCrossRefGoogle Scholar
  12. Foullon, C., Lavraud, B., Luhmann, J.G., Farrugia, C.J., Retinò, A., Simunac, K.D.C., et al.: 2011, Astrophys. J. 737(1), 16. DOI. ADSCrossRefGoogle Scholar
  13. Fränz, M., Harper, D.: 2002, Planet. Space Sci. 50(2), 217. DOI. ADSCrossRefGoogle Scholar
  14. Galvin, A.B., Kistler, L.M., Popecki, M.A., Farrugia, C.J., Simunac, K.D.C., Ellis, L., et al.: 2008, Space Sci. Rev. 136, 437. DOI. ADSCrossRefGoogle Scholar
  15. Galvin, A.B., Popecki, M.A., Simunac, K.D.C., Kistler, L.M., Ellis, L., Barry, J., et al.: 2009, Ann. Geophys. 27, 3909. DOI. ADSCrossRefGoogle Scholar
  16. Gómez-Herrero, R., Klassen, A., Müller-Mellin, R., Heber, B., Wimmer-Schweingruber, R., Böttcher, S.: 2009, J. Geophys. Res. 114, A05101. DOI. ADSCrossRefGoogle Scholar
  17. Gosling, J.T., Pizzo, V.J.: 1999, Space Sci. Rev. 89, 21. DOI. ADSCrossRefGoogle Scholar
  18. Gosling, J.T., Asbridge, J.R., Bame, S.J., Feldman, W.C.: 1978, J. Geophys. Res. 83, 1401. DOI. ADSCrossRefGoogle Scholar
  19. Gosling, J.T., Borrini, G., Asbridge, J.R., Bame, S.J., Feldman, W.C., Hansen, R.T.: 1981, J. Geophys. Res. 86, 5438. DOI. ADSCrossRefGoogle Scholar
  20. Gosling, J.T., McComas, D.J., Skoug, R.M., Forsyth, R.J.: 2001, Space Sci. Rev. 97, 189. DOI. ADSCrossRefGoogle Scholar
  21. Harvey, J.W., Hill, F., Hubbard, R.P., Kennedy, J.R., Leibacher, J.W., Pintar, J.A., Gilman, P.A., et al.: 1996, Science 272(5266), 1284. DOI. ADSCrossRefGoogle Scholar
  22. Heinemann, S.G., Temmer, M., Hofmeister, S.J., Veronig, A.M., Vennerstrøm, S.: 2018, Astrophys. J. 861, 151. DOI. ADSCrossRefGoogle Scholar
  23. Jian, L.: 2008, Radial evolution of large-scale solar wind structures. Ph.D. Thesis, UCLA. Google Scholar
  24. Jian, L.K., Russell, C.T., Luhmann, J.G.: 2011, Solar Phys. 274, 321. DOI. ADSCrossRefGoogle Scholar
  25. Jian, L., Russell, C.T., Gosling, J.T., Luhmann, J.G.: 2005, In: Fleck, B., Zurbuchen, T.H., Lacoste, H. (eds.) Proc. Solar Wind 11-SOHO 16, Connecting Sun and Heliosphere, SP-592, ESA, Noordwijk, 491. Google Scholar
  26. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006a, Solar Phys. 239, 337. DOI. ADSCrossRefGoogle Scholar
  27. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006b, Solar Phys. 239, 393. DOI. ADSCrossRefGoogle Scholar
  28. Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008a, Solar Phys. 249, 85. DOI. ADSCrossRefGoogle Scholar
  29. Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2008b, Adv. Space Res. 41, 259. DOI. ADSCrossRefGoogle Scholar
  30. Jian, L.K., Russell, C.T., Luhmann, J.G., Skoug, R.M., Steinberg, J.T.: 2008c, Solar Phys. 250, 375. DOI. ADSCrossRefGoogle Scholar
  31. Jian, L.K., Russell, C.T., Luhmann, J.G., Galvin, A.B., MacNeice, P.J.: 2009, Solar Phys. 259, 345. DOI. ADSCrossRefGoogle Scholar
  32. Jian, L.K., Russell, C.T., Luhmann, J.G., MacNeice, P.J., Odstrcil, D., Riley, P., Linker, J.A., Skoug, R.M., Steinberg, J.T.: 2011, Solar Phys. 273, 179. DOI. ADSCrossRefGoogle Scholar
  33. Jian, L.K., Russell, C.T., Luhmann, J.G., Galvin, A.B., Simunac, K.D.C.: 2013, In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., et al. (eds.) Solar Wind 13: Proc. 13th Int. Solar Wind Conf., CS-1539, AIP, Melville, 191. DOI CrossRefGoogle Scholar
  34. Jian, L.K., MacNeice, P.J., Taktakishvili, A., Odstrcil, D., Jackson, B., Yu, H.-S., et al.: 2015, Space Weather 13, 316. DOI. ADSCrossRefGoogle Scholar
  35. Jian, L.K., MacNeice, P.J., Mays, M.L., Taktakishvili, A., Odstrcil, D., Jackson, B., et al.: 2016, Space Weather 14, 592. DOI. ADSCrossRefGoogle Scholar
  36. Jian, L.K., Russell, C.T., Luhmann, J.G., Galvin, A.B.: 2018, Astrophys. J. 855, 114. DOI. ADSCrossRefGoogle Scholar
  37. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, Space Sci. Rev. 136, 5. DOI. ADSCrossRefGoogle Scholar
  38. Kilpua, E.K.J., Luhmann, J.G., Gosling, J., Li, Y., Elliott, H., Russell, C.T., et al.: 2009, Solar Phys. 256, 327. DOI. ADSCrossRefGoogle Scholar
  39. King, J.H., Papitashvili, N.E.: 2005, J. Geophys. Res. 110, A02104. DOI. ADSCrossRefGoogle Scholar
  40. Leibacher, J.W.: 1999, Adv. Space Res. 24, 173. DOI. ADSCrossRefGoogle Scholar
  41. Linker, J.A., Caplan, R.M., Downs, C., Lionello, R., Riley, P., Mikic, Z., et al.: 2016, J. Phys. CS-719, 012012. DOI. CrossRefGoogle Scholar
  42. Lionello, R., Velli, M., Downs, C., Linker, J.A., Mikic, Z., Verdini, A.: 2014, Astrophys. J. 784, 120. DOI. ADSCrossRefGoogle Scholar
  43. Lugaz, N., Farrugia, C.J., Winslow, R.M., Al-Haddad, N., Galvin, A.B., Nieves-Chinchilla, T., Lee, C.O., Janvier, M.: 2018, Astrophys. J. Lett. 864, L7. DOI. ADSCrossRefGoogle Scholar
  44. Luhmann, J.G., Curtis, D.W., Schroeder, P., McCauley, J., Lin, R.P., Larson, D.E., et al.: 2008, Space Sci. Rev. 136, 117. DOI. ADSCrossRefGoogle Scholar
  45. MacNeice, P., Jian, L.K., Antiochos, S.K., Arge, C.N., Bussy-Virat, C.D., DeRosa, M.L., et al.: 2018, Space Weather 16, 1644. DOI. ADSCrossRefGoogle Scholar
  46. McComas, D.J., Riley, P., Gosling, J.T., Balogh, A., Forsyth, R.: 1998, J. Geophys. Res. 103, 1955. DOI. ADSCrossRefGoogle Scholar
  47. Merkin, V.G., Lyon, J.G., Lario, D., Arge, C.N., Henney, C.J.: 2016, J. Geophys. Res. 121, 2866. DOI. CrossRefGoogle Scholar
  48. Neugebauer, M., Liewer, P.C., Goldstein, B.E., Zhou, X., Steinberg, J.T.: 2004, J. Geophys. Res. 109, A10102. DOI. ADSCrossRefGoogle Scholar
  49. Newton, H.W., Nunn, M.L.: 1951, Mon. Not. Roy. Astron. Soc. 111, 413. DOI. ADSCrossRefGoogle Scholar
  50. Opitz, A., Karrer, R., Wurz, P., Galvin, A.B., Bochsler, P., Blush, L.M., et al.: 2009, Solar Phys. 256, 365. DOI. ADSCrossRefGoogle Scholar
  51. Owens, M.J., Crooker, N.U., Lockwood, M.: 2013, J. Geophys. Res. 118, 1868. DOI. CrossRefGoogle Scholar
  52. Owens, M.J., Crooker, N.U., Lockwood, M.: 2014, J. Geophys. Res. 119, 36. DOI. CrossRefGoogle Scholar
  53. Richardson, I.G., Mazur, J.E., Mason, G.M.: 1998, J. Geophys. Res. 103(A2), 2115. DOI. ADSCrossRefGoogle Scholar
  54. Riley, P., Lionello, R., Linker, J.A., Mikic, Z., Luhmann, J., Wijaya, J.: 2011, Solar Phys. 274, 361. DOI. ADSCrossRefGoogle Scholar
  55. Roberts, D.A., Thieman, J., Génot, V., King, T., Gangloff, M., Perry, C., et al.: 2018, Space Weather 16, 1899. DOI. ADSCrossRefGoogle Scholar
  56. Rouillard, A.P., Davies, J.A., Lavraud, B., Forsyth, R.J., Savani, N.P., Bewsher, D., et al.: 2010a, J. Geophys. Res. 115, A04103. DOI. ADSCrossRefGoogle Scholar
  57. Rouillard, A.P., Lavraud, B., Davies, J.A., Savani, N.P., Burlaga, L.F., Forsyth, R.J., et al.: 2010b, J. Geophys. Res. 115, A04104. DOI. ADSCrossRefGoogle Scholar
  58. Russell, C.T., Shinde, A.A., Jian, L.: 2005, Adv. Space Res. 35, 2178. DOI. ADSCrossRefGoogle Scholar
  59. Sheeley, N.R. Jr., Lee, D.D.-H., Casto, K.P., Wang, Y.-M., Rich, N.B.: 2009, Astrophys. J. 94, 1471. DOI. ADSCrossRefGoogle Scholar
  60. Simunac, K.D.C., Kistler, L.M., Galvin, A.B., Lee, M.A., Popecki, M.A., Farrugia, C., et al.: 2009, Solar Phys. 259, 323. DOI. ADSCrossRefGoogle Scholar
  61. Song, H.Q., Chen, Y., Liu, K., Feng, S.W., Xia, L.D.: 2009, Solar Phys. 258, 129. DOI. ADSCrossRefGoogle Scholar
  62. Sonnerup, B.U.O., Cahill, L.J.: 1967, J. Geophys. Res. 72, 171. DOI. ADSCrossRefGoogle Scholar
  63. Temmer, M., Rybák, J., Bendík, P., Veronig, A., Vogler, F., Otruba, W., Pötzi, W., Hanslmeier, A.: 2006, Astron. Astrophys. 447, 735. DOI. ADSCrossRefGoogle Scholar
  64. van Hollebeke, M.A.I., McDonald, F.B., Trainor, J.H., von Rosenvinge, T.T.: 1978, J. Geophys. Res. 83, 4723. DOI. ADSCrossRefGoogle Scholar
  65. Wang, Y.-M., Sheeley N.R. Jr., Rich, N.B.: 2007, Astrophys. J. 658, 1340. DOI. ADSCrossRefGoogle Scholar
  66. Wang, Y.-M., Sheeley N.R. Jr., Socker, D.G., Howard, R.A., Rich, N.B.: 2000, J. Geophys. Res. 105, 25133. DOI. ADSCrossRefGoogle Scholar
  67. Wang, Y.-M., Grappin, R., Robbecht, E., Sheeley, N.R.: 2012, Astrophys. J. 749, 182. DOI. ADSCrossRefGoogle Scholar
  68. Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, J. Geophys. Res. 99, 6667. DOI. ADSCrossRefGoogle Scholar
  69. Yu, W., Farrugia, C.J., Lugaz, N., Galvin, A.B., Kilpua, E.K.J., Kucharek, H., et al.: 2014, J. Geophys. Res. 119, 689. DOI. CrossRefGoogle Scholar
  70. Yu, W., Farrugia, C.J., Galvin, A.B., Lugaz, N., Luhmann, J.G., Simunac, K.D.C., Kilpua, E.: 2016, J. Geophys. Res. 121, 5005. DOI. CrossRefGoogle Scholar
  71. Zhao, L., Landi, E., Lepri, S.T., Gilbert, J.A., Zurbuchen, T.H., Fisk, L.A., Raines, J.M.: 2017, Astrophys. J. 846, 135. DOI. ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Space Science LaboratoryUniversity of CaliforniaBerkeleyUSA
  3. 3.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesUSA
  5. 5.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  6. 6.Department of PhysicsUniversity of New HampshireDurhamUSA

Personalised recommendations