Advertisement

Solar Physics

, 294:24 | Cite as

Neural Network Forecast of the Sunspot Butterfly Diagram

  • Eurico CovasEmail author
  • Nuno Peixinho
  • João Fernandes
Article

Abstract

Using neural networks as a prediction method, we attempt to demonstrate that forecasting of the Sun’s sunspot time series can be extended to the spatio-temporal case. We employ this machine-learning method to forecast not only in time but also in space (in this case, latitude) on a spatio-temporal dataset representing the solar sunspot diagram extending to a total of 142 years. The analysis shows that this approach seems to be able to reconstruct the overall qualitative aspects of the spatial-temporal series, namely the overall shape and amplitude of the latitude and time pattern of sunspots. This is, as far as we are aware, the first time that neural networks have been used to forecast the Sun’s sunspot butterfly diagram, and although the results are limited in the quantitative prediction aspects, it points to the way to use the full spatio-temporal series as opposed to just the time series for machine-learning approaches to forecasting. Additionally, we use the method to predict that the upcoming Cycle 25 maximum sunspot number will be around \(R_{25}=57 \pm17\). This implies a very weak cycle and, in fact, the weakest cycle on record.

Keywords

Sunspots Statistics Solar cycle Observations 

Notes

Acknowledgements

We would like to thank Reza Tavakol for very useful conversations regarding forecasting sunspots. We also would like to thank David Hathaway for publishing the data that we used in this article. Finally, we would also like to thank the anonymous referee, whose comments have helped us to improve this article. N. Peixinho acknowledges funding from the Portuguese FCT – Foundation for Science and Technology (ref: SFRH/BGCT/113686/2015). CITEUC is funded by National Funds through FCT – Foundation for Science and Technology (project: UID/Multi/00611/2013) and FEDER – European Regional Development Fund through COMPETE 2020 – Operational Programme Competitiveness and Internationalisation (project: POCI-01-0145-FEDER-006922). J. Fernandes acknowledges funding from the POCH and Portuguese FCT – Foundation for Science and Technology (ref: SFRH/BSAB/143060/2018) and visiting facilities at Niels Bohr Institute (University of Copenhagen).

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Abarbanel, H.D.I., Gollub, J.P.: 1996, Analysis of observed chaotic data. Phys. Today 49, 86. DOI. ADS. CrossRefGoogle Scholar
  2. Acero, F.J., Carrasco, V.M.S., Gallego, M.C., García, J.A., Vaquero, J.M.: 2017, Extreme value theory and the new sunspot number series. Astrophys. J. 839, 98. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Arlt, R.: 2009, The butterfly diagram in the eighteenth century. Solar Phys. 255, 143. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Arlt, R., Weiss, N.: 2014, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev. 186, 525. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Ashwin, P., Covas, E., Tavakol, R.: 1999, Transverse instability for non-normal parameters. Nonlinearity 12, 563. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. Beer, J., Tobias, S., Weiss, N.: 1998, An active sun throughout the Maunder Minimum. Solar Phys. 181, 237. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Broomhall, A.-M., Nakariakov, V.M.: 2015, A comparison between global proxies of the Sun’s magnetic activity cycle: inferences from helioseismology. Solar Phys. 290, 3095. DOI. ADS. ADSCrossRefGoogle Scholar
  8. Cameron, R.H., Jiang, J., Schüssler, M.: 2016, Solar cycle 25: another moderate cycle? Astrophys. J. Lett. 823, L22. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Chandra, R., Zhang, M.: 2012, Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 86, 116. DOI. CrossRefGoogle Scholar
  10. Cheng, T., Wang, J., Haworth, J., Heydecker, B., Chow, A.: 2014, A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geogr. Anal. 46(1), 75. DOI. CrossRefGoogle Scholar
  11. Clette, F., Lefèvre, L.: 2016, The new sunspot number: assembling all corrections. Solar Phys. 291(9-10), 2629. DOI. ADSCrossRefGoogle Scholar
  12. Covas, E.: 2017, Spatial-temporal forecasting the sunspot diagram. Astron. Astrophys. 605, A44. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Covas, E.O., Mena, F.C.: 2011, Forecasting of yield curves using local state space reconstruction. In: Dynamics, Games and Science I, Springer Berlin/Heidelberg, 243. DOI. CrossRefGoogle Scholar
  14. Cun, Y.L., Denker, J.S., Solla, S.A.: 1990, Optimal brain damage. In: Toureztky, D.S. (ed.), Advances in Neural Information Processing Systems 2, 598. ISBN 1-55-860100-7. Google Scholar
  15. Elman, J.L.: 1990, Finding structure in time. Cogn. Sci. 14(2), 179. DOI. CrossRefGoogle Scholar
  16. Frank, R.J., Davey, N., Hunt, S.P.: 2001, Time series prediction and neural networks. J. Intell. Robot. Syst. 31(1), 91. DOI. CrossRefzbMATHGoogle Scholar
  17. Fraser, A.M., Swinney, H.L.: 1986, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134. DOI. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. Hale, G.E.: 1908, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Han, M., Xi, J., Xu, S., Yin, F.-L.: 2004, Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Process. 52(12), 3409. DOI. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network pruning. In: IEEE International Conference on Neural Networks, IEEE, 2002. DOI.
  21. Hathaway, D.H.: 2015a, Sunspot area butterfly diagram data. Original data in http://solarscience.msfc.nasa.gov/greenwch.shtml and more up-to-date data in http://solarcyclescience.com/activeregions.html.
  22. Hathaway, D.H.: 2015b, The solar cycle. Living Rev. Solar Phys. 12, 4. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Hathaway, D.H., Upton, L.A.: 2016, Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. 121(11), 10,744. DOI. CrossRefGoogle Scholar
  24. Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589, 665. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Ilonidis, S., Zhao, J., Hartlep, T.: 2013, Helioseismic investigation of emerging magnetic flux in the solar convection zone. Astrophys. J. 777, 138. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Ivanov, V.G., Miletsky, E.V.: 2011, Width of sunspot generating zone and reconstruction of butterfly. Solar Phys. 268, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Jiang, J., Cao, J.: 2018, Predicting solar surface large-scale magnetic field of cycle 24. J. Atmos. Solar-Terr. Phys. 176, 34. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Jiang, J., Cameron, R.H., Schmitt, D., Schüssler, M.: 2011, The solar magnetic field since 1700. I. Characteristics of sunspot group emergence and reconstruction of the butterfly diagram. Astron. Astrophys. 528, A82. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: 1992, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Kim, H.S., Eykholt, R., Salas, J.D.: 1999, Nonlinear dynamics, delay times, and embedding windows. Physica D 127, 48. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2017, ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84. DOI. CrossRefGoogle Scholar
  32. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: 1998, Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278. DOI. CrossRefGoogle Scholar
  33. Letellier, C., Aguirre, L.A., Maquet, J., Gilmore, R.: 2006, Evidence for low dimensional chaos in sunspot cycles. Astron. Astrophys. 449, 379. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Lockwood, M., Owens, M., Barnard, L., Davis, C., Thomas, S.: 2012, Solar cycle 24: what is the sun up to? Astron. Geophys. 53(3), 3.09. DOI. CrossRefGoogle Scholar
  35. Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: 2017, Reservoir observers: model-free inference of unmeasured variables in chaotic systems. Chaos 27(4), 041102. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Luk, K.C., Ball, J.E., Sharma, A.: 2000, A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227(1-4), 56. DOI. ADSCrossRefGoogle Scholar
  37. Luthardt, L., Rößler, R.: 2017, Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Mayaud, P.-N.: 1972, The aa indices: a 100-year series characterizing the magnetic activity. J. Geophys. Res. 77, 6870. DOI. ADS. ADSCrossRefGoogle Scholar
  39. McDermott, P.L., Wikle, C.K.: 2017, An ensemble quadratic echo state network for non-linear spatio-temporal forecasting. Statistics 6(1), 315. DOI. MathSciNetCrossRefGoogle Scholar
  40. McIntosh, S.W., Wang, X., Leamon, R.J., Davey, A.R., Howe, R., Krista, L.D., Malanushenko, A.V., Markel, R.S., Cirtain, J.W., Gurman, J.B., Pesnell, W.D., Thompson, M.J.: 2014a, Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features. Astrophys. J. 792, 12. DOI. ADS. ADSCrossRefGoogle Scholar
  41. McIntosh, S.W., Wang, X., Leamon, R.J., Scherrer, P.H.: 2014b, Identifying potential markers of the Sun’s giant convective scale. Astrophys. J. Lett. 784, L32. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Mundt, M.D., Maguire, W.B. II, Chase, R.R.P.: 1991, Chaos in the sunspot cycle – analysis and prediction. J. Geophys. Res. 96, 1705. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Muñoz-Jaramillo, A., Balmaceda, L.A., DeLuca, E.E.: 2013, Using the dipolar and quadrupolar moments to improve solar-cycle predictions based on the polar magnetic fields. Phys. Rev. Lett. 111(4), 041106. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Muñoz-Jaramillo, A., Sheeley, N.R., Zhang, J., DeLuca, E.E.: 2012, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Nevanlinna, H., Kataja, E.: 1993, An extension of the geomagnetic activity index series aa for two solar cycles (1844 – 1868). Geophys. Res. Lett. 20, 2703. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Oh, K.: 2002, Analyzing stock market tick data using piecewise nonlinear model. Expert Syst. Appl. 22(3), 249. DOI. CrossRefGoogle Scholar
  47. Owens, B.: 2013, Long-term research: slow science. Nature 495, 300. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Parlitz, U., Merkwirth, C.: 2000, Prediction of spatiotemporal time series based on reconstructed local states. Phys. Rev. Lett. 84, 1890. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: 2017, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27(12), 121102. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: 2018a, Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, 024102. DOI. ADSCrossRefGoogle Scholar
  51. Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B.R., Girvan, M., Ott, E.: 2018b, Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos 28(4), 041101. DOI. ADS. ADSMathSciNetCrossRefGoogle Scholar
  52. Pesnell, W.D.: 2008, Predictions of solar cycle 24. Solar Phys. 252(1), 209. DOI. ADSCrossRefGoogle Scholar
  53. Pesnell, W.D.: 2012, Solar cycle predictions (invited review). Solar Phys. 281, 507. DOI. ADS. ADSCrossRefGoogle Scholar
  54. Pesnell, W.D.: 2016, Predictions of solar cycle 24: how are we doing? Space Weather 14(1), 10. DOI. ADSCrossRefGoogle Scholar
  55. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., Wunsch, D.: 2000, Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30(1-4), 201. DOI. CrossRefGoogle Scholar
  56. Raissi, M.: 2018, Deep hidden physics models: deep learning of nonlinear partial differential equations. ArXiv e-prints. ADS.
  57. Raissi, M., Karniadakis, G.E.: 2018, Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125. DOI. ADS. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. Raissi, M., Perdikaris, P., Karniadakis, G.E.: 2017a, Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential equations. ArXiv e-prints. ADS.
  59. Raissi, M., Perdikaris, P., Karniadakis, G.E.: 2017b, Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations. ArXiv e-prints. ADS.
  60. Reed, R., Marks II, R.J.: 1999, Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks, A Bradford Book, Mit Press, Massachusetts. ISBN 0-26-252701-4. CrossRefGoogle Scholar
  61. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: 1986, Learning representations by back-propagating errors. Nature 323, 533. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  62. Rumelhart, D.E., McClelland, J.L., Group, P.R.: 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (Volume 1), A Bradford Book, Massachusetts. ISBN 0-26-218120-7. Google Scholar
  63. Santos, A.R.G., Cunha, M.S., Avelino, P.P., Campante, T.L.: 2015, Spot cycle reconstruction: an empirical tool. Application to the sunspot cycle. Astron. Astrophys. 580, A62. DOI. ADS. ADSCrossRefGoogle Scholar
  64. Schwabe, H.: 1844, Sonnenbeobachtungen im Jahre 1843. Von Herrn Hofrath Schwabe in Dessau. Astron. Nachr. 21, 233. DOI. ADS. ADSCrossRefGoogle Scholar
  65. Sheng, Z., Hong-Xing, L., Dun-Tang, G., Si-Dan, D.: 2003, Determining the input dimension of a neural network for nonlinear time series prediction. Chin. Phys. 12(6), 594. DOI. ADSCrossRefGoogle Scholar
  66. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: 2004, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084. DOI. ADS. ADSCrossRefGoogle Scholar
  67. Spiegel, E.A.: 2009, Chaos and intermittency in the solar cycle. Space Sci. Rev. 144, 25. DOI. ADS. ADSCrossRefGoogle Scholar
  68. Stathakis, D.: 2009, How many hidden layers and nodes? Int. J. Remote Sens. 30(8), 2133. DOI. ADSCrossRefGoogle Scholar
  69. Sunspot Index and Long-Term Solar Observations (SILSO) World Data Center, The international sunspot number, 13-month smoothed monthly sunspot number in http://sidc.be/silso/DATA/SN_ms_tot_V2.0.txt. International sunspot number monthly bulletin and online catalogue. ADS.
  70. Upton, L.A., Hathaway, D.H.: 2018, An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys. Res. Lett. 45(16), 8091. DOI. ADSCrossRefGoogle Scholar
  71. Usoskin, I.G., Mursula, K., Arlt, R., Kovaltsov, G.A.: 2009, A solar cycle lost in 1793-1800: early sunspot observations resolve the old mystery. Astrophys. J. Lett. 700, L154. DOI. ADS. ADSCrossRefGoogle Scholar
  72. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.: 1990, Phoneme recognition using time-delay neural networks. In: Readings in Speech Recognition, Elsevier, Amsterdam, 393. DOI. CrossRefGoogle Scholar
  73. Wang, Y.-M., Sheeley, N.R.: 2009, Understanding the geomagnetic precursor of the solar cycle. Astrophys. J. Lett. 694, L11. DOI. ADS. ADSCrossRefGoogle Scholar
  74. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: 2004, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600. DOI. ADSCrossRefGoogle Scholar
  75. Weiss, N.O.: 1988, Is the solar cycle an example of deterministic chaos? In: Stephenson, F.R., Wolfendale, A.W. (eds.) Secular Solar and Geomagnetic Variations in the Last 10,000 Years, 69. ADS. CrossRefGoogle Scholar
  76. Weiss, N.O.: 1990, Periodicity and aperiodicity in solar magnetic activity. Phil. Trans. Roy. Soc. London Ser. A, Math. Phys. Sci. 330, 617. DOI. ADS. ADSCrossRefGoogle Scholar
  77. Wilson, R.M., Hathaway, D.H.: 2006, On the relation between sunspot area and sunspot number. NASA STI/Recon Technical Report N 6. ADS.
  78. Wilson, D.R., Martinez, T.R.: 2003, The general inefficiency of batch training for gradient descent learning. Neural Netw. 16(10), 1429. DOI. CrossRefGoogle Scholar
  79. Zhang, Y.: 2009, Recurrent Neural Networks: Design, Analysis, Applications to Control and Robotic Systems, LAP Lambert Academic Publishing, Riga. ISBN 3-83-830382-2. Google Scholar
  80. Zhang, J.-S., Xiao, X.-C.: 2000, Predicting chaotic time series using recurrent neural network. Chin. Phys. Lett. 17(2), 88. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CITEUC – Centre for Earth and Space Science Research of the University of CoimbraGeophysical and Astronomical Observatory of the University of CoimbraCoimbraPortugal
  2. 2.Department of MathematicsUniversity of CoimbraCoimbraPortugal

Personalised recommendations