Advertisement

Solar Physics

, 294:28 | Cite as

Coronal Imaging with the Solar UltraViolet Imager

  • Sivakumara K. TadikondaEmail author
  • Douglas C. Freesland
  • Robin R. Minor
  • Daniel B. Seaton
  • Gustave J. Comeyne
  • Alexander Krimchansky
Article
Part of the following topical collections:
  1. Solar Wind at the Dawn of the Parker Solar Probe and Solar Orbiter Era

Abstract

We investigate the coronal imaging capabilities of the Solar UltraViolet Imager (SUVI) on board the Geostationary Operational Environmental Satellite-R series spacecraft. Nominally Sun-pointed, SUVI provides solar images in six extreme ultraviolet (EUV) wavelengths. On-orbit data indicated that SUVI had sufficient dynamic range and sensitivity to image the corona to the largest heights above the Sun to date while simultaneously imaging the Sun. We undertook a campaign to investigate the existence of the EUV signal well beyond the nominal Sun-centered imaging area of the solar EUV imagers. We off-pointed the SUVI line of sight by almost one imaging area around the Sun. We present the details of the campaign we conducted when the solar cycle was at near the minimum and some results that confirm that EUV emission is present to beyond three solar radii.

Keywords

Solar UltraViolet Imager Geostationary Operational Environmental Satellite-R GOES-R Extended coronal imaging EUV corona 

Notes

Acknowledgements

The authors sincerely thank the GOES-R Flight Project for the test campaign, and gratefully acknowledge the assistance of the Lockheed Martin (LM), Palo Alto, CA, SUVI team in the campaign and the analysis. Special thanks to Margaret Shaw, Lawrence Shing, and Ralph Seguin of LM, and Calvin Nwachuku of the GOES-R Mission Operations Support Team for their assistance in this effort.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11207_2019_1411_MOESM1_ESM.mp4 (64.2 mb)
(MP4 64.2 MB)
11207_2019_1411_MOESM2_ESM.mp4 (72.5 mb)
(MP4 72.5 MB)

References

  1. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, Solar Phys. 162, 357. DOI. ADSCrossRefGoogle Scholar
  2. Chamberlin, P.: 2018, Private communication. Google Scholar
  3. D’Huys, E., Seaton, D.B., De Groof, A., Berghmans, D., Poedts, S.: 2017, J. Space Weather Space Clim. 7, A7. DOI. CrossRefGoogle Scholar
  4. Golub, L., Pasachoff, J.: 2009, The Solar Corona, 2nd edn. Cambridge University Press, Cambridge ISBN 978-0-521-88201-9. Google Scholar
  5. Gopalswamy, N., Yashiro, S., Mäkelä, P., Xie, H., Akiyama, S., Monstein, C.: 2018, Astrophys. J. Lett. 863, L39. DOI. ADSCrossRefGoogle Scholar
  6. Goryaev, F., Slemzin, V., Vainshtein, L., Williams, D.R.: 2014, Astrophys. J. 781, 100. DOI. ADSCrossRefGoogle Scholar
  7. Halain, J.-P., Berghmans, D., Seaton, D.B., Nicula, B., De Groof, A., Mierla, M., et al.: 2013, Solar Phys. 286, 67. DOI. ADSCrossRefGoogle Scholar
  8. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Space Sci. Rev. 136, 67. DOI. ADSCrossRefGoogle Scholar
  9. Kuzin, S.V., Zhitnik, I.A., Shestov, S.V., Bogachev, S.A., Bugaenko, O.I., Ignat’ev, A.P., et al.: 2011, Solar Syst. Res. 45, 162. DOI. ADSCrossRefGoogle Scholar
  10. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., et al.: 2012, Solar Phys. 275, 17. DOI. ADSCrossRefGoogle Scholar
  11. Martínez-Galarce, D., Harvey, J., Bruner, M., Lemen, J., Gullikson, E., Soufli, R., et al.: 2010, In: Arnaud, M., Murray, S.S., Takahashi, T. (eds.) Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, San Diego, CA, SPIE 7732. DOI. CrossRefGoogle Scholar
  12. Martínez-Galarce, D., Soufli, R., Windt, D.L., Bruner, M., Gullikson, E., Khatri, S., et al.: 2013, Optical Engineering 52, 095102. DOI. CrossRefGoogle Scholar
  13. Reva, A.A., Kirichenko, A.S., Kuzin, S.V., Ulanov, A.S.: 2017, Astrophys. J. 851, 108. DOI. ADSCrossRefGoogle Scholar
  14. Savage, S.: 2016, Private communication. Google Scholar
  15. Seaton, D.B., Darnel, J.M.: 2018, Astrophys. J. Lett. 852, L9. DOI. ADSCrossRefGoogle Scholar
  16. Seaton, D.B., Berghmans, D., Nicula, B., Halain, J.-P., De Groof, A., Thibert, T., et al.: 2013a, Solar Phys. 286, 43. DOI. ADSCrossRefGoogle Scholar
  17. Seaton, D.B., DeGroof, A., Shearer, P., Berghmans, D., Nicula, B.: 2013b, Astrophys. J. 777, 72. DOI. ADSCrossRefGoogle Scholar
  18. Shestov, S.V., Zhukov, A.N.: 2018, Astron. Astrophys. 612, A82. DOI. ADSCrossRefGoogle Scholar
  19. Slemzin, V., Bougaenko, O., Ignatiev, A., Kuzin, S., Mitrofanov, A., Pertsov, A., Zhitnik, I.: 2008, Ann. Geophys. 26, 3007. DOI. ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Sivakumara K. Tadikonda
    • 1
    Email author
  • Douglas C. Freesland
    • 2
  • Robin R. Minor
    • 3
  • Daniel B. Seaton
    • 4
    • 5
  • Gustave J. Comeyne
    • 6
  • Alexander Krimchansky
    • 7
  1. 1.CSEngineeringAnnapolisUSA
  2. 2.ACS EngineeringClarksvilleUSA
  3. 3.ASRC Federal Technical ServicesBeltsvilleUSA
  4. 4.Cooperative Institute for Research in Environmental SciencesUniv. Of ColoradoBoulderUSA
  5. 5.NOAA National Centers for Environmental InformationBoulderUSA
  6. 6.National Oceanic and Atmospheric AdministrationSilver SpringUSA
  7. 7.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations