Solar Physics

, 294:21 | Cite as

Evolution of the Sun’s Polar Fields and the Poleward Transport of Remnant Magnetic Flux

  • A. V. MordvinovEmail author
  • L. L. Kitchatinov


Synoptic magnetograms and relevant proxy data were analyzed to study the evolution of the Sun’s polar magnetic fields. The time-latitude analysis of large-scale magnetic fields demonstrates cyclic changes in their zonal structure and the polar field buildup. The time-latitude distributions of the emergent and remnant magnetic flux enable us to examine individual features of recent cycles. The poleward transport of predominantly following polarities contributed much of the polar flux and led to polar field reversals. Multiple reversals of dominant polarities at the Sun’s poles were identified in Cycles 20 and 21. Triple reversals were caused by remnant flux surges of following and leading polarities. The time-latitude analysis of solar magnetic fields in Cycles 20 – 24 revealed zones that are characterized by a predominance of negative (non-Joy) tilts and by the appearance of active regions that violate Hale’s polarity law. The decay of non-Joy and anti-Hale active regions results in remnant flux surges that disturb the usual order in magnetic flux transport and sometimes lead to multiple reversals of polar fields. The analysis of local and large-scale magnetic fields and their causal relation improved our understanding of the Sun’s polar field weakening.


Magnetic fields, photosphere Active regions Solar cycle, observations 



This research uses synoptic magnetograms from the WSO and Kitt Peak observatories. We also used sunspot group tilt data from the Mount Wilson and Debrecen observatories. The synoptic maps from the McIntosh archive were also used in this research. We are grateful to A.I. Khlystova for preparing data on anti-Hale active regions, and J. Sutton for improving the English version of the manuscript. The work was supported by Basic Research program II.16 and the RFBR project 17-02-00016.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572. ADSCrossRefGoogle Scholar
  2. Baranyi, T.: 2015, Comparison of Debrecen and Mount Wilson/Kodaikanal sunspot group tilt angles and the Joy’s law. Mon. Not. Roy. Astron. Soc. 447, 1857. ADSCrossRefGoogle Scholar
  3. Baumann, I., Schmitt, D., Schüssler, M., Solanki, S.K.: 2004, Evolution of the large-scale magnetic field on the solar surface: A parameter study. Astron. Astrophys. 426, 1075. ADSCrossRefGoogle Scholar
  4. Cameron, R.H., Duvall, T.L., Schüssler, M., Schunker, H.: 2018, Observing and modeling the poloidal and toroidal fields of the solar dynamo. Astron. Astrophys. 609, A56. ADSCrossRefGoogle Scholar
  5. Choudhuri, A.R., Karak, B.B.: 2012, Origin of grand minima in sunspot cycles. Phys. Rev. Lett. 109(17), 171103. ADSCrossRefGoogle Scholar
  6. Choudhuri, A.R., Schüssler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29. ADSGoogle Scholar
  7. Dasi-Espuig, M., Solanki, S.K., Krivova, N.A., Cameron, R., Peñuela, T.: 2010, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7. ADSCrossRefGoogle Scholar
  8. Dasi-Espuig, M., Solanki, S.K., Krivova, N.A., Cameron, R., Peñuela, T.: 2013, Sunspot group tilt angles and the strength of the solar cycle (Corrigendum). Astron. Astrophys. 556, C3. ADSCrossRefGoogle Scholar
  9. DeVore, C.R., Sheeley, N.R. Jr., Boris, J.P., Young, T.R. Jr., Harvey, K.L.: 1985, Simulations of magnetic-flux transport in solar active regions. Solar Phys. 102, 41. ADSCrossRefGoogle Scholar
  10. Durney, B.R.: 1995, On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys. 160, 213. ADSCrossRefGoogle Scholar
  11. Duvall, T.L. Jr., Wilcox, J.M., Svalgaard, L., Scherrer, P.H., McIntosh, P.S.: 1977, Comparison of H alpha synoptic charts with the large-scale solar magnetic field as observed at Stanford. NASA STI/Recon Technical Report N 77. Google Scholar
  12. Erofeev, D.V.: 2004, An observational evidence for the Babcock–Leighton dynamo scenario. In: Stepanov, A.V., Benevolenskaya, E.E., Kosovichev, A.G. (eds.) Multi-Wavelength Investigations of Solar Activity, IAU Symposium 223, 97. Google Scholar
  13. Gaizauskas, V., Harvey, K.L., Harvey, J.W., Zwaan, C.: 1983, Large-scale patterns formed by solar active regions during the ascending phase of Cycle 21. Astrophys. J. 265, 1056. ADSCrossRefGoogle Scholar
  14. Golubeva, E.M., Mordvinov, A.V.: 2016, Decay of activity complexes, formation of unipolar magnetic regions, and coronal holes in their causal relation. Solar Phys. 291, 3605. ADSCrossRefGoogle Scholar
  15. Golubeva, E.M., Mordvinov, A.V.: 2017, Rearrangements of open magnetic flux and formation of polar coronal holes in Cycle 24. Solar Phys. 292, 175. ADSCrossRefGoogle Scholar
  16. Györi, L., Baranyi, T., Ludmány, A., Gerlei, O., Csepura, G., Mezö, G.: 2004, Debrecen photoheliographic data for the years 1993 – 1995. Publ. Debr. Heliophys. Obs. 17, 1. ADSGoogle Scholar
  17. Hathaway, D.H., Rightmire, L.: 2011, Variations in the axisymmetric transport of magnetic elements on the Sun: 1996 – 2010. Astrophys. J. 729, 80. ADSCrossRefGoogle Scholar
  18. Hoeksema, J.T.: 2010, Evolution of the large-scale magnetic field over three solar cycles. In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) Solar and Stellar Variability: Impact on Earth and Planets, IAU Symposium 264, 222. Google Scholar
  19. Howard, R.F.: 1991, Axial tilt angles of sunspot groups. Solar Phys. 136, 251. ADSCrossRefGoogle Scholar
  20. Jiang, J., Cameron, R.H., Schüssler, M.: 2015, The cause of the weak solar Cycle 24. Astrophys. J. Lett. 808, L28. ADSCrossRefGoogle Scholar
  21. Jiang, J., Işik, E., Cameron, R.H., Schmitt, D., Schüssler, M.: 2010, The effect of activity-related meridional flow modulation on the strength of the solar polar magnetic field. Astrophys. J. 717, 597. ADSCrossRefGoogle Scholar
  22. Jiang, J., Cameron, R.H., Schmitt, D., Işık, E.: 2013, Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Astrophys. 553, A128. ADSCrossRefGoogle Scholar
  23. Jiang, J., Hathaway, D.H., Cameron, R.H., Solanki, S.K., Gizon, L., Upton, L.: 2014, Magnetic flux transport at the solar surface. Space Sci. Rev. 186, 491. ADSCrossRefGoogle Scholar
  24. Jones, H.P., Duvall, T.L. Jr., Harvey, J.W., Mahaffey, C.T., Schwitters, J.D., Simmons, J.E.: 1992, The NASA/NSO spectromagnetograph. Solar Phys. 139, 211. ADSCrossRefGoogle Scholar
  25. Kitchatinov, L.L., Mordvinov, A.V., Nepomnyashchikh, A.A.: 2018, Modelling variability of solar activity cycles. Astron. Astrophys. 615, A38. ADSCrossRefGoogle Scholar
  26. Kosovichev, A.G., Stenflo, J.O.: 2008, Tilt of emerging bipolar magnetic regions on the Sun. Astrophys. J. Lett. 688, L115. ADSCrossRefGoogle Scholar
  27. Leighton, R.B.: 1969, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1. ADSCrossRefGoogle Scholar
  28. Li, J.: 2018, A systematic study of Hale and anti-Hale sunspot physical parameters. Astrophys. J. 867(2), 89. ADSCrossRefGoogle Scholar
  29. Li, J., Ulrich, R.K.: 2012, Long-term measurements of sunspot magnetic tilt angles. Astrophys. J. 758(2), 115. ADSCrossRefGoogle Scholar
  30. Lockwood, M., Owens, M.J., Imber, S.M., James, M.K., Bunce, E.J., Yeoman, T.K.: 2017, Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution. J. Geophys. Res. 122, 5870. CrossRefGoogle Scholar
  31. Makarov, V.I., Fatianov, M.P., Sivaraman, K.R.: 1983, Poleward migration of the magnetic neutral line and the reversal of the polar fields on the Sun. I – Period 1945 – 1981. Solar Phys. 85, 215. ADSCrossRefGoogle Scholar
  32. Makarov, V.I., Sivaraman, K.R.: 1986, Atlas of H-alpha synoptic charts for solar cycle 19 (1955 – 1964). Carrington solar rotations 1355 to 1486. Kodaikanal Obs. Bull. 7, 138. Google Scholar
  33. McClintock, B.H., Norton, A.A.: 2013, Recovering Joy’s law as a function of solar cycle, hemisphere, and longitude. Solar Phys. 287, 215. ADSCrossRefGoogle Scholar
  34. McClintock, B.H., Norton, A.A.: 2016, Tilt angle and footpoint separation of small and large bipolar sunspot regions observed with HMI. Astrophys. J. 818, 7. ADSCrossRefGoogle Scholar
  35. McIntosh, P.S.: 1979, Annotated atlas of H-alpha synoptic charts for solar Cycle 20 (1964 – 1974) Carrington solar rotations 1487 – 1616. NASA STI/Recon Technical Report N 79. Google Scholar
  36. Mordvinov, A.V., Yazev, S.A.: 2014, Reversals of the Sun’s polar magnetic fields in relation to activity complexes and coronal holes. Solar Phys. 289, 1971. ADSCrossRefGoogle Scholar
  37. Mordvinov, A.V., Grigoryev, V.M., Erofeev, D.V.: 2015, Evolution of sunspot activity and inversion of the Sun’s polar magnetic field in the current cycle. Adv. Space Res. 55, 2739. ADSCrossRefGoogle Scholar
  38. Mordvinov, A., Pevtsov, A., Bertello, L., Petri, G.: 2016, The reversal of the Sun’s magnetic field in Cycle 24. J. Solar-Terr. Phys. 2(1), 3. ADSGoogle Scholar
  39. Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L.A., DeLuca, E.E.: 2013, Solar cycle propagation, memory prediction: insights from a century of magnetic proxies. Astrophys. Lett. 767, L25. ADSCrossRefGoogle Scholar
  40. Olemskoy, S.V., Kitchatinov, L.L.: 2013, Grand minima and North–South asymmetry of solar activity. Astrophys. J. 777, 71. ADSCrossRefGoogle Scholar
  41. Petrie, G.J.D.: 2015, Solar magnetism in the polar regions. Living Rev. Solar Phys. 12, 5. ADSCrossRefGoogle Scholar
  42. Petrie, G., Ettinger, S.: 2017, Polar field reversals and active region decay. Space Sci. Rev. 210, 77. ADSCrossRefGoogle Scholar
  43. Pevtsov, A.A., Berger, M.A., Nindos, A., Norton, A.A., van Driel-Gesztelyi, L.: 2014, Magnetic helicity, tilt, and twist. Space Sci. Rev. 186, 285. ADSCrossRefGoogle Scholar
  44. Schrijver, C.J., Zwaan, C.: 2000, Solar and Stellar Magnetic Activity, Cambridge University Press, Cambridge. CrossRefGoogle Scholar
  45. Sheeley, N.R. Jr., Wang, Y.-M.: 2016, Bipolar magnetic regions determined from Kitt Peak vacuum telescope magnetograms. DOI.
  46. Snodgrass, H.B., Kress, J.M., Wilson, P.R.: 2000, Observations of the polar magnetic fields during the polarity reversals of Cycle 22. Solar Phys. 191, 1. ADSCrossRefGoogle Scholar
  47. Sokoloff, D., Khlystova, A., Abramenko, V.: 2015, Solar small-scale dynamo and polarity of sunspot groups. Mon. Not. Roy. Astron. Soc. 451, 1522. ADSCrossRefGoogle Scholar
  48. Starck, J.-L., Murtagh, F.: 2006, Astronomical Image and Data Analysis, Springer, Berlin, 360. CrossRefGoogle Scholar
  49. Stenflo, J.O., Kosovichev, A.G.: 2012, Bipolar magnetic regions on the Sun: Global analysis of the SOHO/MDI data set. Astrophys. J. 745(2), 129. ADSCrossRefGoogle Scholar
  50. Sun, X., Hoeksema, J.T., Liu, Y., Zhao, J.: 2015, On polar magnetic field reversal and surface flux transport during Solar Cycle 24. Astrophys. J. 798, 114. ADSCrossRefGoogle Scholar
  51. Tlatova, K., Tlatov, A., Pevtsov, A., Mursula, K., Vasil’eva, V., Heikkinen, E., Bertello, L., Pevtsov, A., Virtanen, I., Karachik, N.: 2018, Tilt of sunspot bipoles in Solar Cycles 15 to 24. Solar Phys. 293, 118. ADSCrossRefGoogle Scholar
  52. Upton, L., Hathaway, D.H.: 2014, Effects of meridional flow variations on Solar Cycles 23 and 24. Astrophys. J. 792(2), 142. ADSCrossRefGoogle Scholar
  53. Wang, Y.-M., Sheeley, N.R.: 1989, Average properties of bipolar magnetic regions during sunspot Cycle 21. Solar Phys. 124(1), 81. ADSCrossRefGoogle Scholar
  54. Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the Sun’s dipole moment – New twists to the Babcock–Leighton model. Astrophys. J. 375, 761. ADSCrossRefGoogle Scholar
  55. Wang, Y.-M., Sheeley, N.R. Jr.: 2004, Footpoint switching and the evolution of coronal holes. Astrophys. J. 612(2), 1196. ADSCrossRefGoogle Scholar
  56. Webb, D.F., Gibson, S.E., Hewins, I., McFadden, R., Emery, B.A., Malanushenko, A.V.: 2017, Studies of global solar magnetic field patterns using a newly digitized archive. In: AGU Fall Meeting Abstracts. Google Scholar
  57. Yeates, A.R., Baker, D., van Driel-Gesztelyi, L.: 2015, Source of a prominent poleward surge during Solar Cycle 24. Solar Phys. 290, 3189. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of SciencesIrkutskRussia
  2. 2.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations