Solar Physics

, 294:20 | Cite as

Can High-Mode Magnetohydrodynamic Waves Propagating in a Spinning Macrospicule Be Unstable Due to the Kelvin–Helmholtz Instability?

  • I. ZhelyazkovEmail author
  • R. Chandra


We investigate the conditions at which high-mode magnetohydrodynamic (MHD) waves propagating in a spinning solar macrospicule can become unstable with respect to the Kelvin–Helmholtz instability (KHI). We consider the macrospicule as a weakly twisted cylindrical magnetic flux tube moving along and rotating around its axis. Our study is based on the dispersion relation (in complex variables) of MHD waves obtained from the linearized MHD equations of an incompressible plasma for the macrospicule and cool (\(\beta = 0\), with \(\beta\) the plasma to the magnetic pressure) plasma for its environment. This dispersion equation is solved numerically using appropriate input parameters to find out an instability region or window that accommodates suitable unstable wavelengths on the order of the macrospicule width. It is established that an \(m = 52\) MHD mode propagating in a macrospicule with width of 6 Mm, axial velocity of \(75~\mbox{km}\,\mbox{s}^{-1}\), and rotating one of \(40~\mbox{km}\,\mbox{s}^{-1}\) can become unstable against the KHI with growth times of 2.2 and 0.57 min at 3 and 5 Mm unstable wavelengths, respectively. These growth times are much shorter than the macrospicule lifetime, which lasts about 15 min. An increase or decease in the width of the jet would change the KHI growth times, which remain more or less of the same order when they are evaluated at wavelengths equal to the width or radius of the macrospicule. It is worth noting that the excited MHD modes are super-Alfvénic. A change in the background magnetic field can lead to another MHD mode number, \(m\), that ensures the required instability window.


Magnetohydrodynamics MHD waves and instability Solar macrospicules 



Our work was supported by the Bulgarian Science Fund under project DNTS/INDIA 01/7. The authors are indebted to the anonymous reviewer for pointing out a mathematical error and for the helpful and constructive comments and suggestions that contributed to improving the final version of the manuscript.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Ajabshirizadeh, A., Ebadi, H., Vekalati, R.E., Molaverdikhani, K.: 2015, The possibility of Kelvin–Helmholtz instability in solar spicules. Astrophys. Space Sci. 367, 33. DOI. ADSCrossRefGoogle Scholar
  2. Banerjee, D., O’Shea, E., Doyle, J.G.: 2000, Giant macro-spicule as observed by CDS on SOHO. Astron. Astrophys. 355, 1152. ADS. ADSGoogle Scholar
  3. Bennett, S.M., Erdélyi, R.: 2015, On the statistics of macrospicules. Astrophys. J. 808, 135. DOI. ADSCrossRefGoogle Scholar
  4. Bennett, K., Roberts, B., Narain, U.: 1999, Waves in twisted magnetic flux tubes. Solar Phys. 185, 41. DOI. ADSCrossRefGoogle Scholar
  5. Bohlin, J.D., Vogel, S.N., Purcell, J.D., Sheeley, N.R. Jr., Tousey, R., VanHoosier, M.E.: 1975, A newly observed solar feature: macrospicules in He ii 304 Å. Astrophys. J. 197, L133. DOI. ADSCrossRefGoogle Scholar
  6. Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford. Chap. 11. zbMATHGoogle Scholar
  7. Culhane, J.L., Harra, L.K., James, A.M., et al.: 2007, The EUV Imaging Spectrometer for Hinode. Solar Phys. 243, 19. DOI. ADSCrossRefGoogle Scholar
  8. De Pontieu, B., McIntosh, S., Hansteen, V.H., et al.: 2007, A tale of two spicules: the impact of spicules on the magnetic chromosphere. Proc. Astron. Soc. Japan 59, S655. DOI. CrossRefGoogle Scholar
  9. De Pontieu, B., Rouppe van der Voort, L., McIntosh, S.W., et al.: 2014, On the prevalence of small-scale twist in the solar chromosphere and transition region. Science 346, 1255732. DOI. CrossRefGoogle Scholar
  10. Domingo, V., Fleck, B., Poland, A.I.: 1995, SOHO: the Solar and Heliospheric Observatory. Space Sci. Rev. 72, 81. DOI. ADSCrossRefGoogle Scholar
  11. Ebadi, H.: 2016, Kelvin–Helmholtz instability in solar spicules. Iranian J. Phys. Res. 16, 41. DOI. CrossRefGoogle Scholar
  12. Golub, L., Deluca, E., Austin, G., et al.: 2007, The X-Ray Telescope (XRT) for the Hinode Mission. Solar Phys. 243, 63. DOI. ADSCrossRefGoogle Scholar
  13. Goossens, M., Hollweg, J., Sakurai, T.: 1992, Resonant behaviour of MHD waves on magnetic flux tubes. III. Effect of equilibrium flow. Solar Phys. 138, 233. DOI. ADSCrossRefGoogle Scholar
  14. Harrison, R.A., Fludra, A., Pike, C.D., Payne, J., Thompson, W.T., Poland, A.I., Breeveld, E.R., Breeveld, A.A., Culhane, J.L., Kjeldseth-Moe, O., Huber, M.C.E., Aschenbach, B.: 1997, High-resolution observations of the extreme ultraviolet Sun. Solar Phys. 170, 123. DOI. ADSCrossRefGoogle Scholar
  15. Howard, T.A., Moses, J.D., Vourlidas, A., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADSCrossRefGoogle Scholar
  16. Iijima, H., Yokoyama, T.: 2017, Three-dimensional magnetohydrodynamic simulation of the formation of solar chromospheric jets with twisted magnetic field lines. Astrophys. J. 848, 38. DOI. ADSCrossRefGoogle Scholar
  17. Kaiser, M.L., Kucera, T.A., Davila, J.M., et al.: 2008, The STEREO Mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADSCrossRefGoogle Scholar
  18. Kamio, S., Curdt, W., Teriaca, L., Inhester, B., Solanki, S.K.: 2010, Observations of a rotating macrospicule associated with an X-ray jet. Astron. Astrophys. 510, L1. DOI. ADSCrossRefGoogle Scholar
  19. Kayshap, P., Srivastava, A.K., Murawski, K., Tripathi, D.: 2013, Origin of macrospicule and jet in polar corona by a small-scale kinked flux tube. Astrophys. J. 770, L3. DOI. ADSCrossRefGoogle Scholar
  20. Kiss, T.S., Gyenge, N., Erdélyi, R.: 2017, Systematic variations of macrospicule properties observed by SDO/AIA over half a decade. Astrophys. J. 835, 47. DOI. ADSCrossRefGoogle Scholar
  21. Kosugi, T., Matsuzaki, K., Sakao, T., et al.: 2007, The Hinode (Solar-B) Mission: an overview. Solar Phys. 243, 3. DOI. ADSCrossRefGoogle Scholar
  22. Kuridze, D., Zaqarashvili, T.V., Henriques, V., Mathioudakis, M., Keenan, F.P., Hanslmeier, A.: 2016, Kelvin–Helmholtz instability in solar chromospheric jets: theory and observation. Astrophys. J. 830, 133. DOI. ADSCrossRefGoogle Scholar
  23. Lemen, J.R., Title, A.M., Akin, D.J., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADSCrossRefGoogle Scholar
  24. Loboda, I.P., Bogachev, S.A.: 2017, Plasma dynamics in solar macrospicules from high-cadence extreme-UV observations. Astron. Astrophys. 597, A78. DOI. ADSCrossRefGoogle Scholar
  25. Madjarska, M.S., Vanninathan, K., Doyle, J.G.: 2011, Can coronal hole spicules reach coronal temperatures? Astron. Astrophys. 532, L1. DOI. ADSCrossRefGoogle Scholar
  26. Miura, A.: 1984, Anomalous transport by magnetohydrodynamic Kelvin–Helmholtz instabilities in the solar wind–magnetosphere interaction. J. Geophys. Res. 89, 801. DOI. ADSCrossRefGoogle Scholar
  27. Murawski, K., Srivastava, A.K., Zaqarashvili, T.V.: 2011, Numerical simulations of solar macrospicules. Astron. Astrophys. 535, A58. DOI. ADSCrossRefGoogle Scholar
  28. Parenti, S., Bromage, B.J.I., Bromage, G.E.: 2002, An erupting macrospicule: characteristics derived from SOHO-CDS spectroscopic observations. Astron. Astrophys. 384, 303. DOI. ADSCrossRefGoogle Scholar
  29. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADSCrossRefGoogle Scholar
  30. Pike, C.D., Harrison, R.A.: 1997, Euv observations of a macrospicule: evidence for solar wind acceleration? Solar Phys. 175, 457. DOI. ADSCrossRefGoogle Scholar
  31. Pike, C.D., Mason, H.E.: 1998, Rotating transition region features observed with the SOHO Coronal Diagnostic Spectrometer. Solar Phys. 182, 333. DOI. ADSCrossRefGoogle Scholar
  32. Ryu, D., Jones, T.W., Frank, A.: 2000, The magnetohydrodynamic Kelvin–Helmholtz instability: a three-dimensional study of nonlinear evolution. Astrophys. J. 545, 475. DOI. ADSCrossRefGoogle Scholar
  33. Scullion, E., Doyle, J.G., Erdélyi, R.: 2010, A spectroscopic analysis of macrospicules. Mem. Soc. Astron. Ital. 81, 737. ADS. ADSGoogle Scholar
  34. Vernazza, J.E., Avrett, E.H., Loeser, R.: 1981, Structure of the solar chromosphere. III – models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. 45, 635. DOI. ADSCrossRefGoogle Scholar
  35. Wilhelm, K., Curdt, W., Marsch, E., et al.: 1995, SUMER – Solar Ultraviolet Measurements of Emitted Radiation. Solar Phys. 162, 189. DOI. ADSCrossRefGoogle Scholar
  36. Zank, G.P., Matthaeus, W.H.: 1993, Nearly incompressible fluids. II: magnetohydrodynamics, turbulence, and waves. Phys. Fluids 5, 257. DOI. ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. Zaqarashvili, T.V., Erdélyi, R.: 2009, Oscillations and waves in solar spicules. Space Sci. Rev. 149, 355. DOI. ADSCrossRefGoogle Scholar
  38. Zaqarashvili, T.V., Vörös, Z., Zhelyazkov, I.: 2014, Kelvin–Helmholtz instability of twisted magnetic flux tubes in the solar wind. Astron. Astrophys. 561, A62. DOI. ADSCrossRefGoogle Scholar
  39. Zaqarashvili, T.V., Zhelyazkov, I., Ofman, L.: 2015, Stability of rotating magnetized jets in the solar atmosphere. I. Kelvin–Helmholtz instability. Astrophys. J. 813, 123. DOI. ADSCrossRefGoogle Scholar
  40. Zaqarashvili, T.V., Díaz, A.J., Oliver, R., Ballester, J.L.: 2010, Instability of twisted magnetic tubes with axial mass flows. Astron. Astrophys. 516, A84. DOI. ADSCrossRefzbMATHGoogle Scholar
  41. Zhelyazkov, I.: 2012, Magnetohydrodynamic waves and their stability status in solar spicules. Astron. Astrophys. 537, A124. DOI. ADSCrossRefzbMATHGoogle Scholar
  42. Zhelyazkov, I.: 2013, Kelvin–Helmholtz instability of kink waves in photospheric, chromospheric, and X-ray solar jets. In: Zhelyazkov, I., Mishonov, T. (eds.) Space Plasma Physics: Proceedings of the 4th School and Workshop on Space Plasma Physics, AIP Conf. Proc. 1551, 150. DOI. CrossRefzbMATHGoogle Scholar
  43. Zhelyazkov, I., Chandra, R.: 2018, High mode magnetohydrodynamic waves propagation in a twisted rotating jet emerging from a filament eruption. Mon. Not. Roy. Astron. Soc. 478, 5505. DOI. ADSCrossRefGoogle Scholar
  44. Zhelyazkov, I., Chandra, R., Srivastava, A.K.: 2016, Kelvin–Helmholtz instability in an active region jet observed with Hinode. Astrophys. Space Sci. 361, 51. DOI. ADSCrossRefGoogle Scholar
  45. Zhelyazkov, I., Zaqarashvili, T.V.: 2012, Kelvin–Helmholtz instability of kink waves in photospheric twisted flux tubes. Astron. Astrophys. 547, A14. DOI. ADSCrossRefGoogle Scholar
  46. Zhelyazkov, I., Zaqarashvili, T.V., Ofman, L., Chandra, R.: 2018, Kelvin–Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA. Adv. Space Res. 61, 628. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsSofia UniversitySofiaBulgaria
  2. 2.Department of Physics, DSB CampusKumaun UniversityNainitalIndia

Personalised recommendations