Advertisement

Solar Physics

, 294:16 | Cite as

The Empirical Implication of Conducting a Chree Analysis Using Data from Isolated Neutron Monitors

  • O. OkikeEmail author
  • A. E. Umahi
Article

Abstract

The analysis method developed by Chree has received several critical reviews since its introduction in geophysical studies (Chree in Philos. Trans. Roy. Soc. London, Ser. A, Contain. Pap. Math. Phys. Character212, 75, 1912). Several of these critiques, such as those by Forbush et al. (Solar Phys. 82, 113, 1983), point to the test of significance of epoch superposition results. Forbush events are a key event time used in space weather investigations. Despite the early indications of Marz (J. Atmos. Solar-Terr. Phys. 59, 957, 1997) that the result of a compositing analysis depends on the method of Forbush decrease (FD) date selection, the various conflicting methods of key event date selection appearing in the publications that document an FD-based epoch analysis are yet to be cross-examined in detail. This is the goal of the present submission.

Keywords

Cosmic rays Forbush decreases Cosmic ray stations Chree analysis Statistics Fourier transformation Significance test Critiques Algorithms Simultaneity of Forbush decreases 

Notes

Acknowledgements

We feel indebted to the groups maintaining the websites http://www.nmdb.eu and http://cr0.izmiran.rssi.ru/ . The first author acknowledges the kind assistance of James Arthur Lemon, University of New South Wales. The present analyses benefited so much from his great expertise in R for Statistical Computing software. The thought-provoking queries of the anonymous referees led to significant improvements of the manuscript. Their time and efforts are acknowledged with thanks.

Declaration of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Ahluwalia, H.S., Ygbuhay, R.C., Duldig, M.L.: 2009, Two intense Forbush decreases of solar activity cycle 22. Adv. Space Res. 44, 58. DOI. ADSCrossRefGoogle Scholar
  2. Ananth, A.G., Venkatesan, D.: 1993, Effect of interplanetary shocks and magnetic clouds on onset cosmic-ray decreases. Solar Phys. 143, 373. DOI. ADSCrossRefGoogle Scholar
  3. Badruddin, Venkatesan, D., Zhu, B.Y.: 1991, Study and effect of magnetic clouds on the transient modulation of cosmic-ray intensity. Solar Phys. 134, 203. DOI. ADSCrossRefGoogle Scholar
  4. Barouch, E., Burlaga, L.F.: 1975, Causes of Forbush decreases and other cosmic ray variations. J. Geophys. Res. 80, 449. DOI. ADSCrossRefGoogle Scholar
  5. Belov, A.V.: 2008, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. In: Proceedings IAU Symposium 257. DOI. CrossRefGoogle Scholar
  6. Bhaskar, B., Subramanian, P., Vichare, G.: 2016, Relative contribution of the magnetic field barrier and solar wind speed in ICME-associated Forbush decreases. Astrophys. J. 828, 104. DOI. ADSCrossRefGoogle Scholar
  7. Bieber, J.W., Chen, J.: 1991, Cosmic-ray diurnal anisotropy, 1936 – 1988: implications for drift and modulation theories. Astrophys. J. 372, 301. DOI. ADSCrossRefGoogle Scholar
  8. Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55. ADSCrossRefGoogle Scholar
  9. Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964 – 1994. J. Geophys. Res. 101(A10), 21561. DOI. ADSCrossRefGoogle Scholar
  10. Chree, C.: 1912, Some phenomena of sunspots and of terrestrial magnetism, at Kew Observatory. Philos. Trans. Roy. Soc. London, Ser. A, Contain. Pap. Math. Phys. Character 212, 484. DOI. CrossRefGoogle Scholar
  11. Chree, C.: 1914, Some phenomena of sunspots and of terrestrial magnetism II. Philos. Trans. Roy. Soc. London, Ser. A, Contain. Pap. Math. Phys. Character 213, 245. https://www.jstor.org/stable/91066. ADSCrossRefGoogle Scholar
  12. Chronis, T.G.: 2009, Investigating possible links between incoming cosmic rays fluxes and lightning activity over the United States. J. Climate 22, 5748. DOI. ADSCrossRefGoogle Scholar
  13. Dragic, A., Anicin, I., Banjanac, R., Udovicic, V., Jokovic, D., Maletic, D., Puzovic, J.: 2011, Forbush decreases – clouds relation in the neutron monitor era. Astrophys. Space Sci. Trans. 7, 315. DOI. ADSCrossRefGoogle Scholar
  14. Fenton, A.G., McCracken, K.G., Rose, D.C., Wilson, B.G.: 1959, The onset times of cosmic ray intensity decreases. Can. J. Phys. 37, 970. DOI. ADSCrossRefGoogle Scholar
  15. Forbush, S.E.: 1938, On world-wide changes in cosmic-ray intensity. Phys. Rev. 54(12), 975. DOI. ADSCrossRefGoogle Scholar
  16. Forbush, S.E., Pomerantz, M.A., Duggal, S.P., Tsao, C.H.: 1983, Statistical considerations in the analysis of solar oscillation data by the superposed epoch method. Solar Phys. 82, 113. DOI. ADSCrossRefGoogle Scholar
  17. Haurwitz, M.W., Brier, G.W.: 1981, A critique of the superposed epoch analysis method: its application to solar–weather relations. Mon. Weather Rev. 109, 2074. DOI. ADSCrossRefGoogle Scholar
  18. Hofer, M.Y., Fluckiger, E.O.: 2000, Cosmic ray spectral variations and anisotropy near Earth during the March 24, 1991, Forbush decrease. J. Geophys. Res. 105, 23,085. DOI. ADSCrossRefGoogle Scholar
  19. Jenkins, R.W., Lockwood, J.A., Ifedili, S.O., Chupp, E.L.: 1970, Latitude and altitude dependence of the cosmic ray albedo neutron flux. J. Geophys. Res. 75(22), 4197. DOI. ADSCrossRefGoogle Scholar
  20. Kane, R.P.: 2010, Severe geomagnetic storms and Forbush decreases: interplanetary relationships re-examined. Ann. Geophys. 28, 479. DOI. ADSCrossRefGoogle Scholar
  21. Kristjansson, J.E., Stjern, C.W., Stordal, F., Fjaraa, A.M., Myrhre, G., Jonasson, K.: 2008, Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data. Atmos. Chem. Phys. Discuss. 8, 13265. DOI. ADSCrossRefGoogle Scholar
  22. Lagouvardos, K., Kotroni, V., Betz, H., Schmidt, K.: 2009, A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat. Hazards Earth Syst. Sci. 9, 1713. ADSCrossRefGoogle Scholar
  23. Laken, B.A., Kniveton, D.R.: 2011, Forbush decreases and Antarctic cloud anomalies in the upper troposphere. J. Atmos. Solar-Terr. Phys. 73, 371. DOI. ADSCrossRefGoogle Scholar
  24. Laken, B., Kniveton, D., Wolfendale, A.: 2011, Forbush decreases, solar irradiance variations, and anomalous cloud changes. J. Geophys. Res. 116. DOI.
  25. Lemaitre, G., Vallarta, M.S.: 1933, On Compton’s latitude effect of cosmic radiation. Phys. Rev. 43(2), 87. DOI. ADSCrossRefzbMATHGoogle Scholar
  26. Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., Abunina, M.: 2016, Solar activity parameters and associated Forbush decreases during the minimum between Cycles 23 and 24 and the ascending phase of Cycle 24. Solar Phys., 291(3), 1025. DOI. ADSCrossRefGoogle Scholar
  27. Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12, 658. DOI. ADSCrossRefGoogle Scholar
  28. Lockwood, J.A., Razdan, H.: 1963, Asymmetries in the Forbush decreases of the cosmic radiation 1. Differences in onset times. J. Geophys. Res. 68(6), 1581. DOI. ADSCrossRefGoogle Scholar
  29. Lockwood, J.A., Webber, W.R.: 1969, Cosmic-ray intensity variations on January 26 – 27, 1968. J. Geophys. Res. 74, 5599. DOI. ADSCrossRefGoogle Scholar
  30. Marcz, F.: 1997, Short-term changes in atmospheric electricity associated with Forbush decreases. J. Atmos. Solar-Terr. Phys. 59(9), 957. CrossRefGoogle Scholar
  31. Oh, S.Y., Yi, Y.: 2009, Statistical reality of globally nonsimultaneous Forbush decrease events. J. Geophys. Res. 114, A11102. DOI. ADSCrossRefGoogle Scholar
  32. Oh, S.Y., Yi, Y., Kim, H.Y.: 2008, Globally simultaneous Forbush decrease events and their implications. J. Geophys. Res. 113, A01103. DOI. ADSCrossRefGoogle Scholar
  33. Okike, O., Collier, A.B.: 2011a, A multivariate study of Forbush decrease simultaneity. J. Atmos. Solar-Terr. Phys. 73, 796. DOI. ADSCrossRefGoogle Scholar
  34. Okike, O., Collier, A.B.: 2011b, Testing the cosmic ray-lightning connection hypothesis. In: General Assembly and Scientific Symposium, 2011 XXXth URSI IEEE, 1. DOI. CrossRefGoogle Scholar
  35. Pankaj, K.S., Shukla, R.P.: 1994, High-speed solar wind stream of two different origins and cosmic-ray variations during 1980 – 1986. Solar Phys. 154, 177. DOI. ADSCrossRefGoogle Scholar
  36. Pankaj, K.S., Singh, N.S.: 2005, Latitude and distribution of solar flares and their association with coronal mass ejection. Chin. J. Astron. Astrophys. 5(2), 198. DOI. ADSCrossRefGoogle Scholar
  37. Parker, E.N.: 1964, Theory of streaming of cosmic rays and the diurnal variation. Planet. Space Sci. 12(8), 735. DOI. ADSCrossRefGoogle Scholar
  38. Prager, M.H., Hoenig, J.M.: 1989, Superposed epoch analysis: a randomization test of environmental effects on recruitment with application to chub mackerel. Trans. Am. Fish. Soc. 118, 608. DOI. CrossRefGoogle Scholar
  39. R Core Team: 2014, R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org.
  40. Ramirez, O.O.U., Galicia, J.F.V., Munoz, G., Huttunen, E.: 2013, A catalog of Forbush decreases of the cosmic radiation for the period 1997 – 2007. In: 33rd International Cosmic Ray Conference, Rio de Janeiro. Google Scholar
  41. Rao, U.R.: 1972, Solar modulation of galactic cosmic radiation. Space Sci. Rev. 12, 719. DOI. ADSCrossRefGoogle Scholar
  42. Shea, M.A., Smart, D.F., McCracken, K.G.: 1965, A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 70(17), 4117. DOI. ADSCrossRefGoogle Scholar
  43. Shea, M.A., Smart, D.F., Swinson, D.B., Wilson, M.D.: 1993, High energy cosmic ray modulation in March – June 1991. In: Proceedings of 23rd ICRC, Calgary 3, 735. Google Scholar
  44. Singh, Y.P., Badruddin: 2006, Statistical considerations in superposed epoch analysis and its applications in space research. J. Atmos. Solar-Terr. Phys. 68(7), 803. DOI. ADSCrossRefGoogle Scholar
  45. Smart, D.F., Shea, M.A., Fluckiger, E.O.: 2000, Magnetospheric models and trajectories computations. Space Sci. Rev. 93, 305. DOI. ADSCrossRefGoogle Scholar
  46. Storey, J.R.: 1959, Latitude dependence of a Forbush-type cosmic-ray intensity decrease observed at aircraft altitude. Phys. Rev. 113(1), 302. DOI. ADSCrossRefGoogle Scholar
  47. Svensmark, H., Bondo, T., Svensmark, J.: 2009, Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett. 36, L15101. DOI. ADSCrossRefGoogle Scholar
  48. Svensmark, J., Enghoff, M.B., Svensmark, H.: 2012,. Atmos. Chem. Phys. Discuss. 12, 3595. DOI. ADSCrossRefGoogle Scholar
  49. Tezari, A., Mavromichalaki, H.: 2016, Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001 – 2014. New Astron. 46, 78. DOI. ADSCrossRefGoogle Scholar
  50. Tezari, A., Mavromichalaki, H., Katsinis, D., Kanellakopoulos, A., Kolovi, S., Plainaki, C., Andriopoulou, M.: 2016, Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001 – 2014. Ann. Geophys. 34, 1053. DOI. ADSCrossRefGoogle Scholar
  51. Todd, M.C., Kniveton, D.R.: 2001, Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J. Geophys. Res. 106, 32031. DOI. ADSCrossRefGoogle Scholar
  52. Tsyganenko, N.A., Stern, D.P.: 1996, Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101, 27187. DOI. ADSCrossRefGoogle Scholar
  53. Van Allen, J.A.: 1993, Recovery of interplanetary cosmic ray intensity following the great Forbush decrease of Mid-1991. Geophys. Res. Lett. 20(24), 2798. DOI. CrossRefGoogle Scholar
  54. Venkatesan, D., Badruddin, Ananth, A.G., Pillai, S.: 1992, Significance of the turbulent sheath following the interplanetary shocks in producing Forbush decreases. Solar Phys. 137, 345. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Industrial Physics, Faculty of ScienceEbonyi State UniversityAbakalikiNigeria

Personalised recommendations