Advertisement

Solar Physics

, 294:15 | Cite as

Spectral Analysis of Solar and Geomagnetic Parameters in Relation to Cosmic-ray Intensity for the Time Period 1965 – 2018

  • M. Tsichla
  • M. Gerontidou
  • H. MavromichalakiEmail author
Article
  • 95 Downloads

Abstract

Spectral analysis of solar and geomagnetic parameters as well as of cosmic-ray intensity was performed aiming to identify possible new periodicities and confirm the well-known ones. Specifically, short-, mid-, and long-term periodicities of these parameters such as sunspot number, Bz-component of the interplanetary magnetic field, geomagnetic Ap index, and cosmic-ray intensity over the time period 1965 – 2018, covering five solar cycles from Cycles 20 to 24, are presented. For this purpose, two different techniques, fast Fourier transformation and wavelet analysis, have been used in order to ensure accuracy in the frequency values and also their localization in the time series. The periodicities resulting from our comprehensive study, including the well-known 11-year and 27-day periods, the harmonics of the 5.5-year and of the 6-, 9-, and 13.9-day periods, respectively, and the ≈ 1.3-year and 1.7-year periods, were found in all of the above parameters except for the Bz-component of the interplanetary magnetic field. New periodicities such as the ≈ 10-month period for sunspot number and cosmic-ray intensity and the ≈ 3-year period for sunspot number, Ap index, and cosmic-ray intensity, were also determined. Furthermore, the newly introduced splitting of the 27-day periodicity into two adjacent peaks was confirmed in the Fourier spectra of the interplanetary magnetic field and the geomagnetic Ap index. It was concluded that several common periodicities appear in solar activity: the Ap index, and the cosmic-ray intensity. This result, in association with the fact that the spectral behavior of geomagnetic-activity parameters, provides invaluable information about the physical processes involved, and indicates that the Ap index might be used as a suitable index for space-weather forecasting.

Keywords

Cosmic-ray intensity Sunspot number Periodicities Geomagnetic indices Interplanetary magnetic field 

Notes

Acknowledgements

We gratefully acknowledge the wavelet software provided by C. Torrence and G. Compo ( paos.colorado.edu/research/wavelets/ ) and the Neutron Monitor Database-NMDB, funded under the European Union’s FP7 Program (contract no. 213007). We acknowledge the National Geophysical Data Centre-NOAA, the World Data Center of Kyoto, the Sunspot Index and Long-term Solar Observations-SILSO, and the OMNIWeb of the NASA Goddard Space Flight Center. Thanks are also due to C. Katsavrias and to the anonymous reviewer for suggestions that significantly improved this work.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. Baker, D.N.: 1998, What is space weather? Adv. Space Res. 22, 7. DOI. ADSCrossRefGoogle Scholar
  2. Baranyi, T., Ludmány, A.: 2003, Semiannual behavior of monthly mean of Bz component of geoeffective (Kp > 3) coronal mass ejections, Solar variability as an input to the Earth’s environment. In: Wilson, A. (ed.) Proceedings of ICSC 2003 – Solar Variability as an Input to the Earth’s Environment SP-535, ESA, Noordwijk, 563. ISBN 92-9092-845-X. Google Scholar
  3. Bazilevskaya, G., Broomhall, A.M., Elsworth, Y., Nakariakov, V.M.: 2014, A combined analysis of the observational aspects of the quasi-biennial oscillation in the solar magnetic activity. Space Sci. Rev. 186, 359. DOI. ADSCrossRefGoogle Scholar
  4. Brigham, E.O.: 1988, The Fast Fourier Transform and Its Applications, Prentice-Hall, Inc., Upper Saddle River. ISBN 0-13-307505-2. Google Scholar
  5. Chang, H.-Y.: 2014, Frequency-modulated solar rotational periodicity of geomagnetic indices. Publ. Astron. Soc. Japan 66, 86. DOI. ADSCrossRefGoogle Scholar
  6. Chowdhury, P., Dwivedi, B.N.: 2011, Periodicities of sunspot number and coronal index time series during Solar Cycle 23. Solar Phys. 270, 365. DOI. ADSCrossRefGoogle Scholar
  7. Chowdhury, P., Kudela, K., Moon, Y.J.: 2016, A study of heliospheric modulation and periodicities of galactic cosmic rays during Cycle 24. Solar Phys. 291, 581. DOI. ADSCrossRefGoogle Scholar
  8. Currie, R.G.: 1976, Long period magnetic activity – 2 to 100 years. Astrophys. Space Sci. 39, 251. DOI. ADSCrossRefGoogle Scholar
  9. Durney, B.R.: 2000, On the differences between odd and even solar cycles. Solar Phys. 196, 421. DOI. ADSCrossRefGoogle Scholar
  10. Forbush, S.E.: 1954, World-wide cosmic-ray variations, 1937 – 1952. J. Geophys. Res. 59, 525. DOI. ADSCrossRefGoogle Scholar
  11. Joshi, B., Pant, P., Manoharan, P.K.: 2006, Periodicities in sunspot activity during Solar Cycle 23. Astron. Astrophys. 452, 647. DOI. ADSCrossRefGoogle Scholar
  12. Katsavrias, C., Preka-Papadema, P., Moussas, X.: 2012, Wavelet analysis on solar wind parameters and geomagnetic indices. Solar Phys. 280, 623. DOI. ADSCrossRefGoogle Scholar
  13. Kudela, K., Ananth, A.G., Venkatesan, D.: 1991, The low-frequency spectral behavior of cosmic ray intensity. J. Geophys. Res. 96, 15871. DOI. ADSCrossRefGoogle Scholar
  14. Kudela, K., Sabbah, I.: 2016, Quasi-periodic variations of low energy cosmic rays. Sci. China, Technol. Sci. 59, 547. DOI. CrossRefGoogle Scholar
  15. Kudela, K., Mavromichalaki, H., Papaioannou, A., Gerontidou, M.: 2010, On midterm periodicities in cosmic rays. Solar Phys. 266, 173. DOI. ADSCrossRefGoogle Scholar
  16. Mavromichalaki, H., Belehaki, A., Rafios, X.: 1998, Simulated effects at neutron monitor energies: evidence of the 22-year cosmic ray variation. Astron. Astrophys. 330, 764. ADSGoogle Scholar
  17. Mavromichalaki, H., Marmatsouri, E., Vassilaki, A.: 1988, Solar-cycle phenomena in cosmic-ray intensity: differences between even and odd cycles. Earth Moon Planets 42, 233. DOI. ADSCrossRefGoogle Scholar
  18. Mavromichalaki, H., Preka-Papadema, P., Liritzis, I., Petropoulos, B., Kurt, V.: 2003a, Short-term variations of cosmic-ray intensity and flare-related data in 1981 – 1983. New Astron. 8, 777. DOI. ADSCrossRefGoogle Scholar
  19. Mavromichalaki, H., Preka-Papadema, P., Petropoulos, B., Tsagouri, I., Georgakopoulos, S., Polygiannakis, J.: 2003b, Low and high frequency spectral behaviour of cosmic ray intensity for the period 1953 – 1996. Ann. Geophys. 21, 1681. DOI. ADSCrossRefGoogle Scholar
  20. Mavromichalaki, H., Preka-Papadema, P., Theothoropoulou, A., Paouris, E., Apostolou, Th.: 2017, A study of the possible relation of the cardiac arrhythmias with the magnetic field polarity reversals. Adv. Space Res. 59, 366. DOI. ADSCrossRefGoogle Scholar
  21. Mursula, K., Usoskin, I., Zieger, B.: 1997, On the claimed 5.5-year periodicity in solar activity. Solar Phys. 176, 201. DOI. ADSCrossRefGoogle Scholar
  22. Otaola, J.A., Perez-Enriquez, R., Valdes-Galicia, J.F.: 1985, Difference between even and odd 11-year cycles in cosmic ray intensity. In: Jones, F.C., Adams, J., Mason, G.M. (eds.) Proc. 19th ICRC, 4, CP-2376, 493. NASA GSFC, Greenbelt. Google Scholar
  23. Paularena, K.I., Szabo, A., Richardson, J.D.: 1995, Coincident 1.3-year periodicities in the Ap geomagnetic index and the solar wind. Geophys. Res. Lett. 22, 3001. DOI. ADSCrossRefGoogle Scholar
  24. Poblet, F.L., Azpilicueta, F.: 2018, 27-day variation in solar-terrestrial parameters: global characteristics and an origin based approach of the signals. Adv. Space Res. 61, 2275. DOI. ADSCrossRefGoogle Scholar
  25. Prabhakaran Nayar, S.R., Radhika, V.N., Revathy, K., Ramadas, V.: 2002, Wavelet analysis of solar, solar wind and geomagnetic parameters. Solar Phys. 208, 359. DOI. ADSCrossRefGoogle Scholar
  26. Rieger, E., Share, G.H., Forrest, D.J., Kanbach, G., Reppin, C., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares. Nature 312, 623. DOI. ADSCrossRefGoogle Scholar
  27. Simpson, J.A.: 2000, The cosmic ray nucleonic component: the invention and scientific uses of the neutron monitor. Space Sci. Rev. 93, 11. DOI. ADSCrossRefGoogle Scholar
  28. Singh, Y.P., Badruddin: 2017, Short- and mid-term oscillations of solar, geomagnetic activity and cosmic ray intensity during the last two solar magnetic cycles. Planet. Space Sci. 138, 1. DOI. ADSCrossRefGoogle Scholar
  29. Sugiura, M.: 1980, What do we expect in magnetic activity in the current solar cycle? Eos Trans. AGU 61, 673. DOI. ADSCrossRefGoogle Scholar
  30. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61. DOI. ADSCrossRefGoogle Scholar
  31. Valdes-Galicia, J.F., Perez-Enriquez, R., Otaola, J.A.: 1996, The cosmic-ray 1.68-year variation: a clue to understand the nature of the solar-cycle. Solar Phys. 167, 409. DOI. ADSCrossRefGoogle Scholar
  32. Yoshida, A.: 2014, Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann. Geophys. 32, 1035. DOI. ADSCrossRefGoogle Scholar
  33. Zechmeister, M., Kürster, M.: 2009, The generalised Lomb–Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms. Astron. Astrophys. 496, 577. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Nuclear and Particle Physics Department, Faculty of PhysicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations