Solar Physics

, 294:11 | Cite as

A Global Survey of EUV Coronal Power Spectra

  • Karl BattamsEmail author
  • Brendan M. Gallagher
  • Robert S. Weigel


We present results of an investigation of single-pixel intensity power spectra from a 12-hour time period on 26 June 2013 in a \(1600 \times 1600\)-pixel region from four wavelength channels of NASA’s Solar Dynamics Observatory/Atmospheric Imaging Assembly. We extract single-pixel time series from derotated image sequences, fit two models as a function of frequency \([\nu]\) to their computed power spectra, and study the spatial dependence of the model parameters: i) a three-parameter power law + tail, \(A\nu^{-n}+C\), and ii) a power law + tail + three-parameter localized Lorentzian, \(A\nu^{-n} + C + \alpha/ (1 + (\ln\nu-\beta)^{2} /\delta^{2} )\), the latter to model periodicity. Spectra are well described by at least one of these models for all pixel locations, with the spatial distribution of best-fit model parameters shown to provide new and unique insights into turbulent, quiescent, and periodic features in the EUV corona and upper photosphere. Findings include the following: individual model parameters correspond clearly and directly to visible solar features; detection of numerous quasi-periodic three- and five-minute oscillations; observational identification of concentrated magnetic flux as regions of largest power-law indices \([n]\); identification of sporadically located five-minute oscillations throughout the corona; detection of the known global \({\approx}\,\mbox{four}\)-minute chromospheric oscillation; 2D spatial mapping of “coronal bullseyes” appearing as radially decaying periodicities over sunspots and sporadic foot-point regions, and of “penumbral periodic voids” appearing as broad rings around sunspots in 1600 and 1700 Å in which spectra contain no statistically significant periodic component.


Oscillations, solar Turbulence Sunspots, penumbra, umbra 



K. Battams was supported by the NRL Edison Memorial Program and the Office of Naval Research. The authors wish to thank Jack Ireland for his many inputs during discussion and assistance with model-fitting validation. We are also grateful for the insights of our anonymous reviewers, whose comments have led to significant improvements in this study.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Alfvén, H., Lindblad, B.: 1947, Granulation, magneto-hydrodynamic waves, and the heating of the solar corona. Mon. Not. Roy. Astron. Soc. 107, 211. DOI. ADSCrossRefGoogle Scholar
  2. Andrae, R., Schulze-Hartung, T., Melchior, P.: 2010, Dos and don’ts of reduced chi-squared. arXiv.
  3. Anfinogentov, S.A., Nakariakov, V.M., Nisticò, G.: 2015, Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona? Astron. Astrophys. 583, A136. DOI. ADSCrossRefGoogle Scholar
  4. Arregui, I.: 2015, Wave heating of the solar atmosphere. Phil. Trans. Roy. Soc., Math. Phys. Eng. Sci. 373, 20140261. DOI. ADSCrossRefGoogle Scholar
  5. Auchère, F., Froment, C., Bocchialini, K., Buchlin, E., Solomon, J.: 2016a, On the Fourier and wavelet analysis of coronal time series. Astrophys. J. 825, 110. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Auchère, F., Froment, C., Bocchialini, K., Buchlin, E., Solomon, J.: 2016b, Thermal non-equilibrium revealed by periodic pulses of random amplitudes in solar coronal loops. Astrophys. J. 827, 152. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Battams, K., Gallagher, B.M., Weigel, R.S.: 2019, Investigating dominant chromospheric oscillations via power spectra. Solar Phys. Google Scholar
  8. Bogdan, T.J.: 2000, Sunspot oscillations: A review – (invited review). Solar Phys. 192, 373. DOI. ADSCrossRefGoogle Scholar
  9. Bogdan, T.J., Judge, P.G.: 2006, Observational aspects of sunspot oscillations. Phil. Trans. Roy. Soc., Math. Phys. Eng. Sci. 364(1839), 313. DOI. ADSCrossRefGoogle Scholar
  10. Botha, G.J.J., Arber, T.D., Nakariakov, V.M., Zhugzhda, Y.D.: 2011, Chromospheric resonances above sunspot umbrae. Astrophys. J. 728, 84. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Carlsson, M., Stein, R.S.: 1999, Wave modes in a chromospheric cavity. In: Schmieder, B., Hofmann, A., Staude, J. (eds.) Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, CS-184, 206. Astron. Soc. Pacific, San Francisco. ADS. Google Scholar
  12. DeMoortel, I.: 2009, Longitudinal waves in coronal loops. Space Sci. Rev. 149, 65. DOI. ADSCrossRefGoogle Scholar
  13. Dmitruk, P., Gómez, D.O.: 1997, Turbulent coronal heating and the distribution of nanoflares. Astrophys. J. Lett. 484, L83. DOI. ADSCrossRefGoogle Scholar
  14. Dmitruk, P., Gómez, D.O., Matthaeus, W.H.: 2003, Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics. Phys. Plasmas 10, 3584. DOI. ADSCrossRefGoogle Scholar
  15. Einaudi, G., Velli, M., Politano, H., Pouquet, A.: 1996, Energy release in a turbulent corona. Astrophys. J. Lett. 457, L113. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, Solar Phys. 187, 229. DOI. ADSCrossRefGoogle Scholar
  17. Hanson, C.S., Donea, A.C., Leka, K.D.: 2015, Enhanced acoustic emission in relation to the acoustic halo surrounding active region 11429. Solar Phys. 290(8), 2171. DOI. ADSCrossRefGoogle Scholar
  18. Harvey, K., Harvey, J.: 1973, Observations of moving magnetic features near sunspots. Solar Phys. 28, 61. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Heyvaerts, J., Priest, E.R.: 1992, A self-consistent turbulent model for solar coronal heating. Astrophys. J. 390, 297. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Hill, F., Martens, P., Yoshimura, K., Gurman, J., Hourclé, J., Dimitoglou, G., Suárez-Solá, I., Wampler, S., Reardon, K., Davey, A., Bogart, R.S., Tian, K.Q.: 2009, The Virtual Solar Observatory – A resource for international heliophysics research. Earth Moon Planets 104, 315. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Howe, R., Jain, K., Bogart, R.S., Haber, D.A., Baldner, C.S.: 2012, Two-dimensional helioseismic power, phase, and coherence spectra of solar dynamics observatory photospheric and chromospheric observables. Solar Phys. 281, 533. DOI. ADSCrossRefGoogle Scholar
  22. Inglis, A.R., Ireland, J., Dominique, M.: 2015, Quasi-periodic pulsations in solar and stellar flares: Re-evaluating their nature in the context of power-law flare Fourier spectra. Astrophys. J. 798, 108. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Ireland, J., McAteer, R.T.J., Inglis, A.R.: 2015, Coronal Fourier power spectra: Implications for coronal seismology and coronal heating. Astrophys. J. 798, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Jess, D.B., DeMoortel, I., Mathioudakis, M., Christian, D.J., Reardon, K.P., Keys, P.H., Keenan, F.P.: 2012, The source of 3 minute magnetoacoustic oscillations in coronal fans. Astrophys. J. 757, 160. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Khomenko, E., Collados, M.: 2015, Oscillations and waves in sunspots. Living Rev. Solar Phys. 12, 6. DOI. ADSCrossRefGoogle Scholar
  26. Kitiashvili, I.N., Kosovichev, A.G., Mansour, N.N., Wray, A.A.: 2015, Realistic modeling of local dynamo processes on the Sun. Astrophys. J. 809, 84. DOI. ADSCrossRefGoogle Scholar
  27. Leighton, R.B., Noyes, R.W., Simon, G.W.: 1962, Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474. DOI. ADS. ADSCrossRefGoogle Scholar
  28. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2011, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADSCrossRefGoogle Scholar
  29. Lindsey, C., Braun, D.C.: 1998, The acoustic moat and thermal transport in the neighborhoods of sunspots. Astrophys. J. 499, L99. DOI. ADSCrossRefGoogle Scholar
  30. Matsumoto, T.: 2016, Competition between shock and turbulent heating in coronal loop system. Mon. Not. Roy. Astron. Soc. 463, 502. DOI. ADSCrossRefGoogle Scholar
  31. McIntosh, S.W., de Pontieu, B., Tomczyk, S.: 2008, A coherence-based approach for tracking waves in the solar corona. Solar Phys. 252, 321. DOI. ADS. ADSCrossRefGoogle Scholar
  32. McIntosh, S.W., Smillie, D.G.: 2004, Characteristic scales of chromospheric oscillation wave packets. Astrophys. J. 604, 924. DOI. ADSCrossRefGoogle Scholar
  33. Muglach, K.: 2003, Dynamics of solar active regions. Astron. Astrophys. 401, 685. DOI. ADSCrossRefGoogle Scholar
  34. Müller, W.-C., Grappin, R.: 2005, Spectral energy dynamics in magnetohydrodynamic turbulence. Phys. Rev. Lett. 95, 114502. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Mumford, S.J., Christe, S., Pérez-Suárez, D., Ireland, J., Shih, A.Y., Inglis, A.R., Liedtke, S., Hewett, R.J., Mayer, F., Hughitt, K., Freij, N., Meszaros, T., Bennett, S.M., Malocha, M., Evans, J., Agrawal, A., Leonard, A.J., Robitaille, T.P., Mampaey, B., Campos-Rozo, J.I., Kirk, M.S. (SunPy Community): 2015, SunPy – Python for solar physics. Comput. Sci. Discov. 8(1), 014009. DOI. ADS. CrossRefGoogle Scholar
  36. Nakariakov, V.M., Anfinogentov, S.A., Nisticò, G., Lee, D.-H.: 2016, Undamped transverse oscillations of coronal loops as a self-oscillatory process. Astron. Astrophys. 591, L5. DOI. ADSCrossRefGoogle Scholar
  37. Nisticò, G., Nakariakov, V.M., Verwichte, E.: 2013, Decaying and decayless transverse oscillations of a coronal loop. Astron. Astrophys. 552, A57. DOI. ADSCrossRefGoogle Scholar
  38. Parnell, C.E., DeMoortel, I.: 2012, A contemporary view of coronal heating. Phil. Trans. Roy. Soc., Math. Phys. Eng. Sci. 370, 3217. DOI. ADSCrossRefGoogle Scholar
  39. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Rappazzo, A.F., Velli, M., Einaudi, G.: 2010, Shear photospheric forcing and the origin of turbulence in coronal loops. Astrophys. J. 722, 65. DOI. ADSCrossRefGoogle Scholar
  41. Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B.: 2007, Coronal heating, weak MHD turbulence, and scaling laws. Astrophys. J. Lett. 657, L47. DOI. ADSCrossRefGoogle Scholar
  42. Rappazzo, A.F., Velli, M., Einaudi, G., Dahlburg, R.B.: 2008, Nonlinear dynamics of the Parker scenario for coronal heating. Astrophys. J. 677, 1348. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Reardon, K.P., Lepreti, F., Carbone, V., Vecchio, A.: 2008, Evidence of shock-driven turbulence in the solar chromosphere. Astrophys. J. Lett. 683, L207. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Reznikova, V.E., Shibasaki, K.: 2012, Spatial structure of sunspot oscillations observed with SDO/AIA. Astrophys. J. 756, 35. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Reznikova, V.E., Shibasaki, K., Sych, R.A., Nakariakov, V.M.: 2012, Three-minute oscillations above sunspot umbra observed with the Solar Dynamics Observatory/Atmospheric Imaging Assembly and Nobeyama Radioheliograph. Astrophys. J. 746, 119. DOI. ADS. ADSCrossRefGoogle Scholar
  46. Roberts, B.: 2006, Slow magnetohydrodynamic waves in the solar atmosphere. Phil. Trans. Roy. Soc., Math. Phys. Eng. Sci. 364(1839), 447. DOI. ADSMathSciNetCrossRefGoogle Scholar
  47. Ryutova, M., Shine, R., Title, A., Sakai, J.I.: 1998, A possible mechanism for the origin of emerging flux in the sunspot moat. Astrophys. J. 492, 402. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Sheeley, N.R. Jr., Stauffer, J.R., Thomassie, J.C., Warren, H.P.: 2017, Tracking the magnetic flux in and around sunspots. Astrophys. J. 836, 144. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Sheeley, N.R., Warren, H.P.: 2012, Coronal cells. Astrophys. J. 749, 40. DOI. ADSCrossRefGoogle Scholar
  50. Taroyan, Y., Erdélyi, R.: 2008, Global acoustic resonance in a stratified solar atmosphere. Solar Phys. 251, 523. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Taroyan, Y., Erdélyi, R., Bradshaw, S.J.: 2011, Observational signatures of impulsively heated coronal loops: Power-law distribution of energies. Solar Phys. 269, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Threlfall, J., DeMoortel, I., Conlon, T.: 2017, Above the noise: The search for periodicities in the inner heliosphere. Solar Phys. 292, 165. DOI. ADSCrossRefGoogle Scholar
  53. Tziotziou, K., Tsiropoula, G., Mein, N., Mein, P.: 2007, Dual-line spectral and phase analysis of sunspot oscillations. Astron. Astrophys. 463, 1153. DOI. ADS. ADSCrossRefGoogle Scholar
  54. van Ballegooijen, A.A.: 1986, Cascade of magnetic energy as a mechanism of coronal heating. Astrophys. J. 311, 1001. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Vecchio, A., Cauzzi, G., Reardon, K.P., Janssen, K., Rimmele, T.: 2006, Solar atmospheric oscillations and the chromospheric magnetic topology. Astron. Astrophys. 461, L1. DOI. ADSCrossRefGoogle Scholar
  56. Verdini, A., Velli, M., Buchlin, E.: 2009, Turbulence in the sub-Alfvénic solar wind driven by reflection of low-frequency Alfvén waves. Astrophys. J. Lett. 700, L39. DOI. ADSCrossRefGoogle Scholar
  57. Vrabec, D.: 1971, Magnetic fields spectroheliograms from the San Fernando Observatory. In: Howard, R. (ed.) Solar Magnetic Fields, IAU Symposium 43, Springer, Dordrecht, 329. DOI. ADS. CrossRefGoogle Scholar
  58. Wilson, P.R.: 1973, The cooling of a sunspot. III: Recent observations. Solar Phys. 32, 435. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Yuan, D., Sych, R., Reznikova, V.E., Nakariakov, V.M.: 2014, Multi-height observations of magnetoacoustic cut-off frequency in a sunspot atmosphere. Astron. Astrophys. 561, A19. DOI. ADS. ADSCrossRefGoogle Scholar
  60. Zhao, J., Kosovichev, A.G.: 2006, Surface magnetism effects in time–distance helioseismology. Astrophys. J. 643, 1317. DOI. ADSCrossRefGoogle Scholar
  61. Zhou, Y., Matthaeus, W., Dmitruk, P.: 2004, Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys. 76, 1015. DOI. ADSCrossRefGoogle Scholar
  62. Zhugzhda, Y.D.: 2008, Seismology of a sunspot atmosphere. Solar Phys. 251, 501. DOI. ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.US Naval Research LaboratoryWashington, DCUSA
  2. 2.George Mason UniversityFairfaxUSA

Personalised recommendations