Advertisement

Solar Physics

, 293:107 | Cite as

A Major Geoeffective CME from NOAA 12371: Initiation, CME–CME Interactions, and Interplanetary Consequences

  • Bhuwan Joshi
  • M. Syed Ibrahim
  • A. Shanmugaraju
  • D. Chakrabarty
Article

Abstract

In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km s−1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\) – \(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19 – 21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.

Keywords

Coronal mass ejections Flares Magnetic reconnection CME–CME interaction Magnetic clouds 

Notes

Acknowledgements

We thank SDO, Wind/WAVES, and GONG teams for their open data policy. SDO is a NASA mission under the Living With a Star (LWS) program. The data services from CDAWeb are also thankfully acknowledged. We sincerely thank the anonymous referee for providing constructive comments and suggestions that have significantly enhanced the presentation and quality of the paper. We thank Prabir K. Mitra for help in AIA data analysis.

Disclosure of Potential Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Archontis, V., Hood, A.W., Savcheva, A., Golub, L., Deluca, E.: 2009, On the structure and evolution of complexity in sigmoids: A flux emergence model. Astrophys. J. 691, 1276. DOI. ADS. ADSCrossRefGoogle Scholar
  2. Bamba, Y., Lee, K.-S., Imada, S., Kusano, K.: 2017, Study on precursor activity of the X1.6 flare in the great AR 12192 with SDO, IRIS, and Hinode. Astrophys. J. 840, 116. DOI. ADS. ADSCrossRefGoogle Scholar
  3. Benz, A.O.: 2017, Flare observations. Living Rev. Solar Phys. 14, 2. DOI. ADS. ADSCrossRefGoogle Scholar
  4. Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: The radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev. 71, 231. DOI. ADS. ADSCrossRefGoogle Scholar
  5. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADS. ADSCrossRefGoogle Scholar
  6. Burlaga, L.F., Lemaire, J.F.: 1978, Interplanetary magnetic holes – theory. J. Geophys. Res. 83, 5157. DOI. ADS. ADSCrossRefGoogle Scholar
  7. Burlaga, L.F., Plunkett, S.P., St. Cyr, O.C.: 2002, Successive CMEs and complex ejecta. J. Geophys. Res. 107, 1266. DOI. ADS. CrossRefGoogle Scholar
  8. Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI. ADS. ADSCrossRefGoogle Scholar
  9. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627. DOI. ADS. ADSCrossRefGoogle Scholar
  10. Chandra, R., Filippov, B., Joshi, R., Schmieder, B.: 2017, Two-step filament eruption during 14 – 15 March 2015. Solar Phys. 292, 81. DOI. ADS. ADSCrossRefGoogle Scholar
  11. Cheng, X., Zhang, J., Liu, Y., Ding, M.D.: 2011, Observing flux rope formation during the impulsive phase of a solar eruption. Astrophys. J. Lett. 732, L25. DOI. ADS. ADSCrossRefGoogle Scholar
  12. Cheng, X., Zhang, J., Ding, M.D., Liu, Y., Poomvises, W.: 2013, The driver of coronal mass ejections in the low corona: a flux rope. Astrophys. J. 763, 43. DOI. ADS. ADSCrossRefGoogle Scholar
  13. Cheng, X., Ding, M.D., Zhang, J., Sun, X.D., Guo, Y., Wang, Y.M., Kliem, B., Deng, Y.Y.: 2014a, Formation of a double-decker magnetic flux rope in the sigmoidal solar active region 11520. Astrophys. J. 789, 93. DOI. ADS. ADSCrossRefGoogle Scholar
  14. Cheng, X., Ding, M.D., Zhang, J., Srivastava, A.K., Guo, Y., Chen, P.F., Sun, J.Q.: 2014b, On the relationship between a hot-channel-like solar magnetic flux rope and its embedded prominence. Astrophys. J. Lett. 789, L35. DOI. ADS. ADSCrossRefGoogle Scholar
  15. Dhara, S.K., Belur, R., Kumar, P., Banyal, R.K., Mathew, S.K., Joshi, B.: 2017, Trigger of successive filament eruptions observed by SDO and STEREO. Solar Phys. 292, 145. DOI. ADS. ADSCrossRefGoogle Scholar
  16. Fletcher, L., Dennis, B.R., Hudson, H.S., Krucker, S., Phillips, K., Veronig, A., Battaglia, M., Bone, L., Caspi, A., Chen, Q., Gallagher, P., Grigis, P.T., Ji, H., Liu, W., Milligan, R.O., Temmer, M.: 2011, An observational overview of solar flares. Space Sci. Rev. 159, 19. DOI. ADS. ADSCrossRefGoogle Scholar
  17. Gibson, S.E., Fan, Y.: 2006, Coronal prominence structure and dynamics: A magnetic flux rope interpretation. J. Geophys. Res.) 111, A12103. DOI. ADS. ADSCrossRefGoogle Scholar
  18. Glover, A., Ranns, N.D.R., Harra, L.K., Culhane, J.L.: 2000, The onset and association of CMEs with sigmoidal active regions. Geophys. Res. Lett. 27, 2161. DOI. ADS. ADSCrossRefGoogle Scholar
  19. Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001a, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. 106, 29207. DOI. ADS. ADSCrossRefGoogle Scholar
  20. Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001b, Radio signatures of coronal mass ejection interaction: Coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91. DOI. ADS. ADSCrossRefGoogle Scholar
  21. Joshi, B., Manoharan, P.K., Veronig, A.M., Pant, P., Pandey, K.: 2007, Multi-wavelength signatures of magnetic reconnection of a flare-associated coronal mass ejection. Solar Phys. 242, 143. DOI. ADS. ADSCrossRefGoogle Scholar
  22. Joshi, B., Veronig, A.M., Lee, J., Bong, S.-C., Tiwari, S.K., Cho, K.-S.: 2011, Pre-flare activity and magnetic reconnection during the evolutionary stages of energy release in a solar eruptive flare. Astrophys. J. 743, 195. DOI. ADS. ADSCrossRefGoogle Scholar
  23. Joshi, B., Kushwaha, U., Cho, K.-S., Veronig, A.M.: 2013, RHESSI and TRACE observations of multiple flare activity in AR 10656 and associated filament eruption. Astrophys. J. 771, 1. DOI. ADS. ADSCrossRefGoogle Scholar
  24. Joshi, B., Kushwaha, U., Veronig, A.M., Cho, K.-S.: 2016, Pre-flare coronal jet and evolutionary phases of a solar eruptive prominence associated with the M1.8 flare: SDO and RHESSI observations. Astrophys. J. 832, 130. DOI. ADS. ADSCrossRefGoogle Scholar
  25. Joshi, B., Kushwaha, U., Veronig, A.M., Dhara, S.K., Shanmugaraju, A., Moon, Y.-J.: 2017, Formation and eruption of a flux rope from the sigmoid active region NOAA 11719 and associated M6.5 flare: A multi-wavelength study. Astrophys. J. 834, 42. DOI. ADS. ADSCrossRefGoogle Scholar
  26. Kilpua, E.K.J., Balogh, A., von Steiger, R., Liu, Y.D.: 2017, Geoeffective properties of solar transients and stream interaction regions. Space Sci. Rev. 212, 1271. DOI. ADS. ADSCrossRefGoogle Scholar
  27. Kliem, B., Titov, V.S., Török, T.: 2004, Formation of current sheets and sigmoidal structure by the kink instability of a magnetic loop. Astron. Astrophys. 413, L23. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  28. Kopp, R.A., Pneuman, G.W.: 1976, Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys. 50, 85. DOI. ADS. ADSCrossRefGoogle Scholar
  29. Krall, J., Sterling, A.C.: 2007, Analysis of erupting solar prominences in terms of an underlying flux-rope configuration. Astrophys. J. 663, 1354. DOI. ADS. ADSCrossRefGoogle Scholar
  30. Kumar, S., Bhattacharyya, R., Joshi, B., Smolarkiewicz, P.K.: 2016, On the role of repetitive magnetic reconnections in evolution of magnetic flux ropes in solar corona. Astrophys. J. 830, 80. DOI. ADS. ADSCrossRefGoogle Scholar
  31. Kushwaha, U., Joshi, B., Veronig, A.M., Moon, Y.-J.: 2015, Large-scale contraction and subsequent disruption of coronal loops during various phases of the M6.2 Flare associated with the confined flux rope eruption. Astrophys. J. 807, 101. DOI. ADS. ADSCrossRefGoogle Scholar
  32. Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 au. Solar Phys. 183, 165. DOI. ADS. ADSCrossRefGoogle Scholar
  33. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.-P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI. ADS. ADSCrossRefGoogle Scholar
  34. Lepri, S.T., Zurbuchen, T.H.: 2010, Direct Observational evidence of filament material within interplanetary coronal mass ejections. Astrophys. J. Lett. 723, L22. DOI. ADS. ADSCrossRefGoogle Scholar
  35. Liu, C., Lee, J., Yurchyshyn, V., Deng, N., Cho, K.-s., Karlický, M., Wang, H.: 2007, The eruption from a sigmoidal solar active region on 2005 May 13. Astrophys. J. 669, 1372. DOI. ADS. ADSCrossRefGoogle Scholar
  36. Lugaz, N., Temmer, M., Wang, Y., Farrugia, C.J.: 2017, The interaction of successive coronal mass ejections: A review. Solar Phys. 292, 64. DOI. ADS. ADSCrossRefGoogle Scholar
  37. Manoharan, P.K., van Driel-Gesztelyi, L., Pick, M., Demoulin, P.: 1996, Evidence for large-scale solar magnetic reconnection from radio and X-ray measurements. Astrophys. J. Lett. 468, L73. DOI. ADS. ADSCrossRefGoogle Scholar
  38. Manoharan, P.K., Maia, D., Johri, A., Induja, M.S.: 2016, Interplanetary consequences of coronal mass ejection events occurred during 18 – 25 June 2015. In: Dorotovic, I., Fischer, C.E., Temmer, M. (eds.) Coimbra Solar Physics Meeting: Ground-Based Solar Observations in the Space Instrumentation Era, Astron. Soc. Pacific Conf. Ser. 504, 59. ADS. Google Scholar
  39. Martínez Oliveros, J.C., Raftery, C.L., Bain, H.M., Liu, Y., Krupar, V., Bale, S., Krucker, S.: 2012, The 2010 August 1 type II burst: A CME–CME interaction and its radio and white-light manifestations. Astrophys. J. 748, 66. DOI. ADS. ADSCrossRefGoogle Scholar
  40. Moore, R.L., Roumeliotis, G.: 1992, Triggering of eruptive flares – destabilization of the preflare magnetic field configuration. In: Svestka, Z., Jackson, B.V., Machado, M.E. (eds.) IAU Colloq. 133: Eruptive Solar Flares, Lec. Notes Phys. 399, 69. DOI. ADS. CrossRefGoogle Scholar
  41. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833. DOI. ADS. ADSCrossRefGoogle Scholar
  42. Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: 2015, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117. DOI. ADS. ADSCrossRefGoogle Scholar
  43. Patsourakos, S., Vourlidas, A., Stenborg, G.: 2013, Direct evidence for a fast coronal mass ejection driven by the prior formation and subsequent destabilization of a magnetic flux rope. Astrophys. J. 764, 125. DOI. ADS. ADSCrossRefGoogle Scholar
  44. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI. ADS. ADSCrossRefGoogle Scholar
  45. Pevtsov, A.A.: 2002, Active-region filaments and X-ray sigmoids. Solar Phys. 207, 111. ADS. ADSCrossRefGoogle Scholar
  46. Prasad, A., Bhattacharyya, R., Kumar, S.: 2017, Magnetohydrodynamic modeling of solar coronal dynamics with an initial non-force-free magnetic field. Astrophys. J. 840, 37. DOI. ADS. ADSCrossRefGoogle Scholar
  47. Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, L199. DOI. ADS. ADSCrossRefGoogle Scholar
  48. Schmieder, B., Aulanier, G., Vršnak, B.: 2015, Flare-CME models: An observational perspective (invited review). Solar Phys. 290, 3457. DOI. ADS. ADSCrossRefGoogle Scholar
  49. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI. ADS. ADSCrossRefGoogle Scholar
  50. Shanmugaraju, A., Vršnak, B.: 2014, Transit time of coronal mass ejections under different ambient solar wind conditions. Solar Phys. 289, 339. DOI. ADS. ADSCrossRefGoogle Scholar
  51. Shanmugaraju, A., Prasanna Subramanian, S., Vrsnak, B., Ibrahim, M.S.: 2014, Interaction between two CMEs during 14 – 15 February 2011 and their unusual radio signature. Solar Phys. 289, 4621. DOI. ADS. ADSCrossRefGoogle Scholar
  52. Sharma, R., Srivastava, N., Chakrabarty, D., Möstl, C., Hu, Q.: 2013, Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments. J. Geophys. Res. 118, 3954. DOI. ADS. CrossRefGoogle Scholar
  53. Shibata, K.: 1999, Evidence of magnetic reconnection in solar flares and a unified model of flares. Astrophys. Space Sci. 264, 129. DOI. ADS. ADSCrossRefzbMATHGoogle Scholar
  54. Syed Ibrahim, M., Shanmugaraju, A., Bendict Lawrance, M.: 2015, Transit time of CME/shock associated with four major geo-effective CMEs in solar cycle 24. Adv. Space Res. 55, 407. DOI. ADS. ADSCrossRefGoogle Scholar
  55. Temmer, M., Veronig, A.M., Peinhart, V., Vršnak, B.: 2014, Asymmetry in the CME–CME interaction process for the events from 2011 February 14 – 15. Astrophys. J. 785, 85. DOI. ADS. ADSCrossRefGoogle Scholar
  56. Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707. ADS. ADSGoogle Scholar
  57. Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI. ADS. ADSGoogle Scholar
  58. Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: The drag-based model. Solar Phys. 285, 295. DOI. ADS. ADSCrossRefGoogle Scholar
  59. Wang, Y.M., Ye, P.Z., Wang, S.: 2003, Multiple magnetic clouds: Several examples during March-April 2001. J. Geophys. Res. 108, 1370. DOI. ADS. CrossRefGoogle Scholar
  60. Zhao, X., Dryer, M.: 2014, Current status of CME/shock arrival time prediction. Space Weather 12, 448. DOI. ADS. ADSCrossRefGoogle Scholar
  61. Zurbuchen, T.H., Richardson, I.G.: 2006, In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31. DOI. ADS. ADSCrossRefGoogle Scholar
  62. Zurbuchen, T.H., Hefti, S., Fisk, L.A., Gloeckler, G., Schwadron, N.A., Smith, C.W., Ness, N.F., Skoug, R.M., McComas, D.J., Burlaga, L.F.: 2001, On the origin of microscale magnetic holes in the solar wind. J. Geophys. Res. 106, 16001. DOI. ADS. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Physical Research LaboratoryUdaipur Solar ObservatoryUdaipurIndia
  2. 2.Department of PhysicsArul Anandar CollegeKarumathur, MaduraiIndia
  3. 3.Space and Atmospheric Sciences DivisionPhysical Research LaboratoryAhmedabadIndia

Personalised recommendations