Solar Physics

, 293:99 | Cite as

Deprojected Trajectory of Blobs in the Inner Corona

  • C. López-Portela
  • O. Panasenco
  • X. Blanco-Cano
  • G. Stenborg


We have carried out a statistical analysis of the kinematical behavior of small white-light transients (blobs) as tracers of the slow solar wind. The characterization of these faint white-light structures gives us insight on the origin and acceleration of the slow solar wind. The vantage observing points provided by the SECCHI and LASCO instruments on board the STEREO and SOHO spacecraft, respectively, allow us to reconstruct the 3D trajectories of these blob-like features and hence calculate their deprojected kinematical parameters. We have studied 44 blobs revealed in LASCO C2/C3 and SECCHI COR2 data from 2007 to 2008, a period within the solar minimum between Solar Cycles 23 and 24. We found that the blobs propagate along approximately constant position angles with accelerations from 1.40 to \(15.34~\mbox{m}\,\mbox{s}^{-2}\) between 3.42 \(R_{\astrosun }\) and 14.80 \(R_{\astrosun }\), their radial sizes ranging between 0.57 \(R_{\astrosun }\) and 1.69 \(R_{\astrosun }\). We also studied the global corona magnetic field morphology for a subset of blobs using a potential field source surface model for cases where blob detachments persist for two to five days. The study of localized blob releases indicates that these plasma structures start their transit at a distance of \(\sim\,{3.40}~R_{\astrosun }\) and their origin is connected either with the boundaries of weak coronal holes or with streamers at equatorial latitudes.


Corona Slow Solar Wind Disturbances 



The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), the Max-Planck-Institut fur Sonnensystemforschung (Germany), the Laboratoire d’Astronomie (France), and the University of Birmingham (UK). SOHO is a project of international cooperation between ESA and NASA. The SECCHI data are courtesy of STEREO and the SECCHI consortium. The STEREO/SECCHI data are produced by a consortium of NRL (USA), LMSAL (USA), NASA/GSFC (USA), RAL (UK), UBHAM (UK), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). C. López-Portela acknowledges the support from CONACyT (394014) and PAPIIT-DGAPA (IN105014-3). X. Blanco-Cano acknowledges the UNAM PAPIIT-DGAPA (IN105014-3) and CONACyT (255203). O. Panasenco acknowledges the NASA grant NNX15AB89G, and G. Stenborg acknowledges the support from the NASA STEREO/SECCHI (S-13631-Y) program. CLP thanks Mari Paz Miralles (Harvard-Smithsonian Center for Astrophysics) for her suggestions in private communications. We acknowledge the referee for their comments.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. Abbo, L., Antonucci, E., Mikić, Z., Linker, J.A., Riley, P., Lionello, R.: 2010, Characterization of the slow wind in the outer corona. Adv. Space Res. 46, 1400. DOI. ADSCrossRefGoogle Scholar
  2. Abbo, L., Lionello, R., Riley, P., Wang, Y.-M.: 2015, Coronal pseudo-streamer and bipolar streamer observed by SOHO/UVCS in March 2008. Solar Phys. 290, 2043. DOI. ADSCrossRefGoogle Scholar
  3. Abbo, L., Ofman, L., Antiochos, S.K., Hansteen, V.H., Harra, L., Ko, Y.-K., et al.: 2016, Slow solar wind: observations and modeling. Space Sci. Rev. 201, 55. DOI. ADSCrossRefGoogle Scholar
  4. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys. 9, 131. DOI. ADSCrossRefGoogle Scholar
  5. Antonucci, E., Abbo, L., Dodero, M.A.: 2005, Slow wind and magnetic topology in the solar minimum corona in 1996 – 1997. Astron. Astrophys. 435, 699. DOI. ADSCrossRefGoogle Scholar
  6. Billings, D.E.: 1966, A Guide to the Solar Corona. Academic Press, New York. ADS. Google Scholar
  7. Brooks, D.H., Ugarte-Urra, I., Warren, H.P.: 2015, Full-Sun observations for identifying the source of the slow solar wind. Nat. Commun. 6, 5947. DOI. ADSCrossRefGoogle Scholar
  8. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI. ADSCrossRefGoogle Scholar
  9. Crooker, N.U., Owens, M.J.: 2012, Interchange reconnection: remote sensing of solar signature and role in heliospheric magnetic flux budget. Space Sci. Rev. 172, 201. DOI. ADSCrossRefGoogle Scholar
  10. Davies, J.A., Harrison, R.A., Rouillard, A.P., Sheeley, N.R. Jr., Perry, C.H., Bewsher, D., et al.: 2009, A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO. Geophys. Res. Lett. 36, L02102. DOI. ADSCrossRefGoogle Scholar
  11. DeVore, C.R., Sheeley, N.R. Jr., Boris, J.P., Young, T.R. Jr., Harvey, K.L.: 1985, Simulations of magnetic-flux transport in solar active regions. Solar Phys. 102, 41. DOI. ADSCrossRefGoogle Scholar
  12. Dolei, S., Bemporad, A., Spadaro, D.: 2014, Measurements with STEREO/COR1 data of drag forces acting on small-scale blobs falling in the intermediate corona. Astron. Astrophys. 562, A74. DOI. ADSCrossRefGoogle Scholar
  13. Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an overview. Solar Phys. 162, 1. DOI. ADSCrossRefGoogle Scholar
  14. Edmondson, J.K., Lynch, B.J., Antiochos, S.K., De Vore, C.R., Zurbuchen, T.H.: 2009, Reconnection-driven dynamics of coronal-hole boundaries. Astrophys. J. 707, 1427. DOI. ADSCrossRefGoogle Scholar
  15. Gibson, S.E., Kucera, T.A., White, S.M., Dove, J.B., Fan, Y., Blake, C., et al.: 2016, FORWARD: a toolset for multiwavelength coronal magnetometry. Front. Astron. Space Sci. 3, 8. DOI. ADSCrossRefGoogle Scholar
  16. Gibson, S.E., Dalmasse, K., Rachmeler, L.A., De Rosa, M.L., Tomczyk, S., de Toma, G., et al.: 2017, Magnetic nulls and super-radial expansion in the solar corona. Astrophys. J. Lett. 840, L13. DOI. ADSCrossRefGoogle Scholar
  17. Gosling, J.T., Hildner, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, The speeds of coronal mass ejection events. Solar Phys. 48, 389. DOI. ADSCrossRefGoogle Scholar
  18. Hildner, E., Gosling, J.T., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1976, Frequency of coronal transients and solar activity. Solar Phys. 48, 127. DOI. ADSCrossRefGoogle Scholar
  19. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI. ADSCrossRefGoogle Scholar
  20. Inhester, B.: 2006, Stereoscopy basics for the STEREO mission. arXiv. ADS.
  21. Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006, Properties of stream interactions at one AU during 1995 – 2004. Solar Phys. 239, 337. DOI. ADSCrossRefGoogle Scholar
  22. Jones, S.I., Davila, J.M.: 2009, Localized plasma density enhancements observed in STEREO COR1. Astrophys. J. 701, 1906. DOI. ADSCrossRefGoogle Scholar
  23. Kaiser, M.L.: 2005, The STEREO mission: an overview. Adv. Space Res. 36, 1483. DOI. ADSCrossRefGoogle Scholar
  24. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI. ADSCrossRefGoogle Scholar
  25. Kilpua, E.K.J., Madjarska, M.S., Karna, N., Wiegelmann, T., Farrugia, C., Yu, W., Andreeova, K.: 2016, Sources of the slow solar wind during the Solar Cycle 23/24 minimum. Solar Phys. 291, 2441. DOI. ADSCrossRefGoogle Scholar
  26. Koutchmy, S.L.: 1988, Small scale coronal structures. In: Altrock, R.C. (ed.) Solar and Stellar Coronal Structure and Dynamics, 208. ADS. Google Scholar
  27. Lynch, B.J., Edmondson, J.K.: 2013, Sympathetic magnetic breakout coronal mass ejections from pseudostreamers. Astrophys. J. 764, 87. DOI. ADSCrossRefGoogle Scholar
  28. MacQueen, R.M., Eddy, J.A., Gosling, J.T., Hildner, E., Munro, R.H., Newkirk, G.A. Jr., et al.: 1974, The outer solar corona as observed from Skylab: preliminary results. Astrophys. J. Lett. 187, L85. DOI. ADSCrossRefGoogle Scholar
  29. Madjarska, M.S., Doyle, J.G., van Driel-Gesztelyi, L.: 2004, Evidence of magnetic reconnection along coronal hole boundaries. Astrophys. J. Lett. 603, L57. DOI. ADSCrossRefGoogle Scholar
  30. McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. DOI. ADSCrossRefGoogle Scholar
  31. Mierla, M., Davila, J., Thompson, W., Inhester, B., Srivastava, N., Kramar, M., et al.: 2008, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Solar Phys. 252, 385. DOI. ADSCrossRefGoogle Scholar
  32. Miralles, M.P., Cranmer, S.R., Kohl, J.L.: 2004, Low-latitude coronal holes during solar maximum. Adv. Space Res. 33, 696. DOI. ADSCrossRefGoogle Scholar
  33. Miralles, M.P., Cranmer, S.R., Panasyuk, A.V., Romoli, M., Kohl, J.L.: 2001, Comparison of empirical models for polar and equatorial coronal holes. Astrophys. J. Lett. 549, L257. DOI. ADSCrossRefGoogle Scholar
  34. Nash, A.G., Sheeley, N.R. Jr., Wang, Y.-M.: 1988, Mechanisms for the rigid rotation of coronal holes. Solar Phys. 117, 359. DOI. ADSCrossRefGoogle Scholar
  35. Neugebauer, M., Liewer, P.C., Smith, E.J., Skoug, R.M., Zurbuchen, T.H.: 2002, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, 1488. DOI. CrossRefGoogle Scholar
  36. Owens, M.J., Crooker, N.U., Lockwood, M.: 2014, Solar cycle evolution of dipolar and pseudostreamer belts and their relation to the slow solar wind. J. Geophys. Res. 119, 36. DOI. CrossRefGoogle Scholar
  37. Panasenco, O., Velli, M.: 2013, Coronal pseudostreamers: source of fast or slow solar wind? In: Zank, G.P., Borovsky, J., Bruno, R., Cirtain, J., Cranmer, S., Elliott, H., Giacalone, J., Gonzalez, W., Li, G., Marsch, E., Moebius, E., Pogorelov, N., Spann, J., Verkhoglyadova, O. (eds.) American Institute of Physics Conference Series, American Institute of Physics Conference Series 1539, 50. DOI. Google Scholar
  38. Panasenco, O., Velli, M.: 2016, Morphology of pseudostreamers and solar wind properties. In: AAS/Solar Physics Division Abstracts Num. 47, AAS/Solar Physics Division Meeting 47, 3.24. ADS. Google Scholar
  39. Phillips, J.L., Balogh, A., Bame, S.J., Goldstein, B.E., Gosling, J.T., Hoeksema, J.T., et al.: 1994, ULYSSES at 50 deg south: constant immersion in the high-speed solar wind. Geophys. Res. Lett. 21, 1105. DOI. ADSCrossRefGoogle Scholar
  40. Plotnikov, I., Rouillard, A.P., Davies, J.A., Bothmer, V., Eastwood, J.P., Gallagher, P., et al.: 2016, Long-term tracking of corotating density structures using heliospheric imaging. Solar Phys. 291, 1853. DOI. ADSCrossRefGoogle Scholar
  41. Rachmeler, L.A., Platten, S.J., Bethge, C., Seaton, D.B., Yeates, A.R.: 2014, Observations of a hybrid double-streamer/pseudostreamer in the solar corona. Astrophys. J. Lett. 787, L3. DOI. ADSCrossRefGoogle Scholar
  42. Rappazzo, A.F., Matthaeus, W.H., Ruffolo, D., Servidio, S., Velli, M.: 2012, Interchange reconnection in a turbulent corona. Astrophys. J. Lett. 758, L14. DOI. ADSCrossRefGoogle Scholar
  43. Riley, P., Luhmann, J.G.: 2012, Interplanetary signatures of unipolar streamers and the origin of the slow solar wind. Solar Phys. 277, 355. DOI. ADSCrossRefGoogle Scholar
  44. Robbrecht, E., Berghmans, D.: 2004, Automated recognition of coronal mass ejections (CMEs) in near-real-time data. Astron. Astrophys. 425, 1097. DOI. ADSCrossRefGoogle Scholar
  45. Rouillard, A.P., Davies, J.A., Forsyth, R.J., Rees, A., Davis, C.J., Harrison, R.A., et al.: 2008, First imaging of corotating interaction regions using the STEREO spacecraft. Geophys. Res. Lett. 35, L10110. DOI. ADSCrossRefGoogle Scholar
  46. Rouillard, A.P., Savani, N.P., Davies, J.A., Lavraud, B., Forsyth, R.J., Morley, S.K., et al.: 2009, A multispacecraft analysis of a small-scale transient entrained by solar wind streams. Solar Phys. 256, 307. DOI. ADSCrossRefGoogle Scholar
  47. Rouillard, A.P., Davies, J.A., Lavraud, B., Forsyth, R.J., Savani, N.P., Bewsher, D., et al.: 2010a, Intermittent release of transients in the slow solar wind: 1. remote sensing observations. J. Geophys. Res. 115, A04103. DOI. ADSGoogle Scholar
  48. Rouillard, A.P., Lavraud, B., Davies, J.A., Savani, N.P., Burlaga, L.F., Forsyth, R.J., et al.: 2010b, Intermittent release of transients in the slow solar wind: 2. In situ evidence. J. Geophys. Res. 115, A04104. DOI. ADSGoogle Scholar
  49. Rouillard, A.P., Sheeley, N.R. Jr., Cooper, T.J., Davies, J.A., Lavraud, B., Kilpua, E.K.J., et al.: 2011, The solar origin of small interplanetary transients. Astrophys. J. 734, 7. DOI. ADSCrossRefGoogle Scholar
  50. Sanchez-Diaz, E., Rouillard, A.P., Lavraud, B., Segura, K., Tao, C., Pinto, R., et al.: 2016, The very slow solar wind: properties, origin and variability. J. Geophys. Res. 121, 2830. DOI. CrossRefGoogle Scholar
  51. Sanchez-Diaz, E., Rouillard, A.P., Davies, J.A., Lavraud, B., Sheeley, N.R., Pinto, R.F., et al.: 2017a, Observational evidence for the associated formation of blobs and raining inflows in the solar corona. Astrophys. J. Lett. 835, L7. DOI. ADSCrossRefGoogle Scholar
  52. Sanchez-Diaz, E., Rouillard, A.P., Davies, J.A., Lavraud, B., Pinto, R.F., Kilpua, E.: 2017b, The temporal and spatial scales of density structures released in the slow solar wind during solar activity maximum. Astrophys. J. 851, 32. DOI. ADSCrossRefGoogle Scholar
  53. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442. DOI. ADSCrossRefGoogle Scholar
  54. Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADSCrossRefGoogle Scholar
  55. Schwenn, R.: 2006, Solar wind sources and their variations over the Solar Cycle. Space Sci. Rev. 124, 51. DOI. ADSCrossRefGoogle Scholar
  56. Sheeley, N.R. Jr., Rouillard, A.P.: 2010, Tracking streamer blobs into the heliosphere. Astrophys. J. 715, 300. DOI. ADSCrossRefGoogle Scholar
  57. Sheeley, N.R. Jr., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., et al.: 1997, Measurements of flow speeds in the corona between 2 and 30 \(R_{\astrosun }\). Astrophys. J. 484, 472. DOI. ADSCrossRefGoogle Scholar
  58. Sheeley, N.R. Jr., Lee, D.D.-H., Casto, K.P., Wang, Y.-M., Rich, N.B.: 2009, The structure of streamer blobs. Astrophys. J. 694, 1471. DOI. ADSCrossRefGoogle Scholar
  59. Sheeley, N.R., Walters, J.H., Wang, Y.-M., Howard, R.A.: 1999, Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J. Geophys. Res. 104, 24739. DOI. ADSCrossRefGoogle Scholar
  60. Slemzin, V., Harra, L., Urnov, A., Kuzin, S., Goryaev, F., Berghmans, D.: 2013, Signatures of slow solar wind streams from active regions in the inner corona. Solar Phys. 286, 157. DOI. ADSCrossRefGoogle Scholar
  61. Song, H.Q., Chen, Y., Liu, K., Feng, S.W., Xia, L.D.: 2009, Quasi-periodic releases of streamer blobs and velocity variability of the slow solar wind near the Sun. Solar Phys. 258, 129. DOI. ADSCrossRefGoogle Scholar
  62. Song, H.-Q., Chen, Y., Li, G., Kong, X.-L., Feng, S.-W.: 2012, Coalescence of macroscopic magnetic islands and electron acceleration from STEREO observation. Phys. Rev. X 2, 021015. DOI. Google Scholar
  63. Susino, R., Ventura, R., Spadaro, D., Vourlidas, A., Landi, E.: 2008, Physical parameters along the boundaries of a mid-latitude streamer and in its adjacent regions. Astron. Astrophys. 488, 303. DOI. ADSCrossRefGoogle Scholar
  64. Viall, N.M., Kepko, L., Spence, H.E.: 2008, Inherent length-scales of periodic solar wind number density structures. J. Geophys. Res. 113, A07101. DOI. ADSCrossRefGoogle Scholar
  65. Viall, N.M., Vourlidas, A.: 2015, Periodic density structures and the origin of the slow solar wind. Astrophys. J. 807, 176. DOI. ADSCrossRefGoogle Scholar
  66. Wang, Y.-M.: 2015, Pseudostreamers as the source of a separate class of solar coronal mass ejections. Astrophys. J. Lett. 803, L12. DOI. ADSCrossRefGoogle Scholar
  67. Wang, Y.-M.: 2017, Small coronal holes near active regions as sources of slow solar wind. Astrophys. J. 841, 94. DOI. ADSCrossRefGoogle Scholar
  68. Wang, Y.-M., Lean, J., Sheeley, N.R. Jr.: 2000, The long-term variation of the Sun’s open magnetic flux. Geophys. Res. Lett. 27, 505. DOI. ADSCrossRefGoogle Scholar
  69. Wang, Y.-M., Sheeley, N.R. Jr.: 1991, Magnetic flux transport and the sun’s dipole moment – New twists to the Babcock–Leighton model. Astrophys. J. 375, 761. DOI. ADSCrossRefGoogle Scholar
  70. Wang, Y.-M., Sheeley, N.R. Jr.: 1993, Understanding the rotation of coronal holes. Astrophys. J. 414, 916. DOI. ADSCrossRefGoogle Scholar
  71. Wang, Y.-M., Sheeley, N.R. Jr.: 2004, Footpoint switching and the evolution of coronal holes. Astrophys. J. 612, 1196. DOI. ADSCrossRefGoogle Scholar
  72. Wang, Y.-M., Sheeley, N.R. Jr., Howard, R.A., Kraemer, J.R., Rich, N.B., Andrews, M.D., et al.: 1997, Origin and evolution of coronal streamer structure during the 1996 minimum activity phase. Astrophys. J. 485, 875. DOI. ADSCrossRefGoogle Scholar
  73. Wang, Y.-M., Sheeley, N.R. Jr., Walters, J.H., Brueckner, G.E., Howard, R.A., Michels, D.J., et al.: 1998, Origin of streamer material in the outer corona. Astrophys. J. Lett. 498, L165. DOI. ADSCrossRefGoogle Scholar
  74. Wang, Y.-M., Robbrecht, E., Rouillard, A.P., Sheeley, N.R. Jr., Thernisien, A.F.R.: 2010, Formation and evolution of coronal holes following the emergence of active regions. Astrophys. J. 715, 39. DOI. ADSCrossRefGoogle Scholar
  75. Wang, Y.-M., Grappin, R., Robbrecht, E., Sheeley, N.R. Jr.: 2012, On the nature of the solar wind from coronal pseudostreamers. Astrophys. J. 749, 182. DOI. ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Instituto de GeofisicaPosgrado en Ciencias de la Tierra, UNAMMexico CityMexico
  2. 2.Instituto de GeofisicaUNAMMexico CityMexico
  3. 3.Advanced HeliophysicsPasadenaUSA
  4. 4.Space Science DivisionU.S. Naval Research LaboratoryWashingtonUSA

Personalised recommendations