Evidence of Twisted Flux-Tube Emergence in Active Regions


Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs (e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14


  1. Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56. DOI .

  2. Berger, M.A.: 1984, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79.

  3. Bernasconi, P.N., Rust, D.M., Georgoulis, M.K., Labonte, B.J.: 2002, Moving dipolar features in an emerging flux region. Solar Phys. 209, 119. ADS . DOI .

  4. Bisoi, S.K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S., Divekar, A.: 2014, Changes in quasi-periodic variations of solar photospheric fields: precursor to the deep solar minimum in Cycle 23? Solar Phys. 289, 41. ADS . DOI .

  5. Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53. DOI .

  6. Démoulin, P., Pariat, E.: 2009, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013. ADS . DOI .

  7. Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650. DOI .

  8. Emonet, T., Moreno-Insertis, F.: 1998, The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804. DOI .

  9. Fan, Y.: 2001, Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes. Astrophys. J. 546, 509. ADS . DOI .

  10. Fan, Y.: 2009, Magnetic fields in the solar convection zone. Living Rev. Solar Phys. 6, 4. ADS . DOI .

  11. Fan, Y., Fisher, G.H., Deluca, E.E.: 1993, The origin of morphological asymmetries in bipolar active regions. Astrophys. J. 405, 390. DOI .

  12. Gosain, S., Démoulin, P., López Fuentes, M.: 2014, Distribution of electric currents in sunspots from photosphere to corona. Astrophys. J. Submitted. DOI

  13. Green, L.M., López fuentes, M.C., Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43. DOI .

  14. Green, L.M., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2003, How are emerging flux, flares and CMEs related to magnetic polarity imbalance in MDI data? Solar Phys. 215, 307. ADS . DOI .

  15. Hood, A.W., Archontis, V., MacTaggart, D.: 2012, 3D MHD flux emergence experiments: idealised models and coronal interactions. Solar Phys. 278, 3. ADS . DOI .

  16. Hood, A.W., Archontis, V., Galsgaard, K., Moreno-Insertis, F.: 2009, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999. DOI .

  17. Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022. DOI .

  18. Jouve, L., Brun, A.S., Aulanier, G.: 2013, Global dynamics of subsurface solar active regions. Astrophys. J. 762, 4. DOI .

  19. Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2004, The trigger mechanism of solar flares in a coronal arcade with reversed magnetic shear. Astrophys. J. 610, 537. ADS .

  20. LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955. DOI .

  21. Li, H., Schmieder, B., Song, M.T., Bommier, V.: 2007, Interaction of magnetic field systems leading to an X1.7 flare due to large-scale flux tube emergence. Astron. Astrophys. 475, 1081. DOI .

  22. Lim, E.-K., Jeong, H., Chae, J., Moon, Y.-J.: 2007, A check for consistency between different magnetic helicity measurements based on the helicity conservation principle. Astrophys. J. 656, 1167. DOI .

  23. Liu, J., Zhang, H.: 2006, The magnetic field, horizontal motion and helicity in a fast emerging flux region which eventually forms a delta spot. Solar Phys. 234, 21. DOI .

  24. López Fuentes, M.C., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540. DOI .

  25. López Fuentes, M.C., Démoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L.: 2003, Magnetic twist and writhe of active regions. On the origin of deformed flux tubes. Astron. Astrophys. 397, 305. DOI .

  26. Luoni, M.L., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2011, Twisted flux tube emergence evidenced in longitudinal magnetograms: magnetic tongues. Solar Phys. 270, 45. ADS . DOI .

  27. MacTaggart, D.: 2011, Flux emergence within mature solar active regions. Astron. Astrophys. 531, A108. DOI .

  28. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725. DOI .

  29. Murray, M.J., Hood, A.W.: 2008, Emerging flux tubes from the solar interior into the atmosphere: effects of non-constant twist. Astron. Astrophys. 479, 567. DOI .

  30. Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V.: 2006, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909. DOI .

  31. Nakwacki, M.S., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys. 535, A52. ADS . DOI .

  32. Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033. DOI .

  33. Otsuji, K., Kitai, R., Ichimoto, K., Shibata, K.: 2011, Statistical study on the nature of solar-flux emergence. Publ. Astron. Soc. Japan 63, 1047. ADS .

  34. Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2004, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099. DOI .

  35. Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P.: 2012, Magnetic tongues properties in solar active regions. Bol. Asoc. Argent. Astron. 55, 147. ADS .

  36. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129. DOI .

  37. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI .

  38. Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C.: 1996, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947. ADS .

  39. Tian, L., Alexander, D.: 2008, On the origin of magnetic helicity in the solar corona. Astrophys. J. 673, 532. DOI .

  40. Toriumi, S., Hayashi, K., Yokoyama, T.: 2012, Detection of the horizontal divergent flow prior to the solar flux emergence. Astrophys. J. 751, 154. ADS . DOI .

  41. Valori, G., Green, L.M., Démoulin, P., Vargas Domínguez, S., van Driel-Gesztelyi, L., Wallace, A., Baker, D., Fuhrmann, M.: 2012, Nonlinear force-free extrapolation of emerging flux with a global twist and serpentine fine structures. Solar Phys. 278, 73. ADS . DOI .

  42. van Driel-Gesztelyi, L., Green, L.M.: 2014, Evolution of active regions. Living Rev. Solar Phys. In press.

  43. van Driel-Gesztelyi, L., Petrovay, K.: 1990, Asymmetric flux loops in active regions. Solar Phys. 126, 285. DOI .

  44. Vargas Domínguez, S., van Driel-Gesztelyi, L., Bellot Rubio, L.R.: 2012, Granular-scale elementary flux emergence episodes in a solar active region. Solar Phys. 278, 99. ADS . DOI .

  45. Yang, S., Zhang, H., Büchner, J.: 2009, Magnetic helicity accumulation and tilt angle evolution of newly emerging active regions. Astron. Astrophys. 502, 333. DOI .

  46. Zhang, H.: 2001, Formation of current helicity and emerging magnetic flux in solar active regions. Mon. Not. Roy. Astron. Soc. 326, 57. DOI .

  47. Zhang, H., Moss, D., Kleeorin, N., Kuzanyan, K., Rogachevskii, I., Sokoloff, D., Gao, Y., Xu, H.: 2012, Current helicity of active regions as a tracer of large-scale solar magnetic helicity. Astrophys. J. 751, 47. DOI .

Download references


CHM and MLF acknowledge financial support from the Argentinean grants PICT 2012-0973 (ANPCyT), UBACyT 20020100100733 and PIP 2009-100766 (CONICET). CHM and MLF are members of the Carrera del Investigador Científico (CONICET). MP is a fellow of CONICET. CHM thanks the Paris Observatory for a one-month invitation.

Author information

Correspondence to M. Poisson.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MP4 7.9 MB)

(MP4 1.8 MB)

(MP4 3.8 MB)

(MP4 7.9 MB)

(MP4 5.7 MB)

(MP4 6.9 MB)

(MP4 11.2 MB)

(MP4 1.8 MB)

(MP4 9.9 MB)

(MP4 3.8 MB)



Table 1 The analyzed ARs and their computed parameters. Column one shows the NOAA AR number. Columns two to five list the values of \(\overline{\tau}\), τ max, \(\overline {\tau_{\mathrm{c}}}\), and τ c,max; all of these values are expressed in degrees. Finally, columns six and seven indicate the number of turns as defined in the text and computed using \(\overline{\tau_{\mathrm{c}}}\) and τ c,max, respectively. All of the parameters are computed during the analyzed AR emergence period.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poisson, M., Mandrini, C.H., Démoulin, P. et al. Evidence of Twisted Flux-Tube Emergence in Active Regions. Sol Phys 290, 727–751 (2015) doi:10.1007/s11207-014-0633-4

Download citation


  • Active regions, magnetic fields
  • Corona, structures
  • Helicity, magnetic
  • Helicity, observations