Solar Physics

, Volume 286, Issue 1, pp 21–42 | Cite as

The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

  • M. Dominique
  • J.-F. Hochedez
  • W. Schmutz
  • I. E. Dammasch
  • A. I. Shapiro
  • M. Kretzschmar
  • A. N. Zhukov
  • D. Gillotay
  • Y. Stockman
  • A. BenMoussa
PROBA2 – First Two Years of Solar Observation

Abstract

The Large Yield Radiometer (LYRA) is an XUV–EUV–MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

Keywords

Instrumentation and data management Solar irradiance Flares Earth atmosphere Eclipse observations 

References

  1. BenMoussa, A., Schühle, U., Haenen, K., Nesládek, M., Koizumi, S., Hochedez, J.-F.: 2004, PIN diamond detector development for LYRA, the solar VUV radiometer on board PROBA II. Phys. Status Solidi, a Appl. Res. 201, 2536 – 2541. doi:10.1002/pssa.200405187. ADSCrossRefGoogle Scholar
  2. BenMoussa, A., Theissen, A., Scholze, F., Hochedez, J.F., Schühle, U., Schmutz, W., Haenen, K., Stockman, Y., Soltani, A., McMullin, D., Vest, R.E., Kroth, U., Laubis, C., Richter, M., Mortet, V., Gissot, S., Delouille, V., Dominique, M., Koller, S., Halain, J.P., Remes, Z., Petersen, R., D’Olieslaeger, M., Defise, J.-M.: 2006, Performance of diamond detectors for VUV applications. Nuc. Instrum. Methods Phys. Res. A 568, 398 – 405. doi:10.1016/j.nima.2006.06.007. ADSCrossRefGoogle Scholar
  3. BenMoussa, A., Dammasch, I.E., Hochedez, J.-F., Schühle, U., Koller, S., Stockman, Y., Scholze, F., Richter, M., Kroth, U., Laubis, C., Dominique, M., Kretzschmar, M., Mekaoui, S., Gissot, S., Theissen, A., Giordanengo, B., Bolsee, D., Hermans, C., Gillotay, D., Defise, J.-M., Schmutz, W.: 2009, Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2. Astron. Astrophys. 508, 1085 – 1094. doi:10.1051/0004-6361/200913089. ADSCrossRefGoogle Scholar
  4. Bothmer, V., Daglis, I.A.: 2007, Space Weather – Physics and Effects, Praxis Publishing, New York. Google Scholar
  5. Cessateur, G., Dudok de Wit, T., Kretzschmar, M., Lilensten, J., Hochedez, J.-F., Snow, M.: 2011, Monitoring the solar UV irradiance spectrum from the observation of a few passbands. Astron. Astrophys. 528, A68. doi:10.1051/0004-6361/201015903. ADSCrossRefGoogle Scholar
  6. Dolla, L., Marqué, C., Seaton, D.B., Van Doorsselaere, T., Dominique, M., Berghmans, D., Cabanas, C., De Groof, A., Schmutz, W., Verdini, A., West, M.J., Zender, J., Zhukov, A.: 2012, Time delays in quasi-periodic pulsations observed during the X2.2 solar flare on 15 February 2011. Astrophys. J. Lett. 749, L16. doi:10.1088/2041-8205/749/1/L16. ADSCrossRefGoogle Scholar
  7. Dominique, M., Gillotay, D., Fussen, D., Vanhellemont, F., Hochedez, J.-F., Schmutz, W.: 2009, In: Steiner, A., Pirscher, B., Foelsche, U., Kirchengast, G. (eds.) Horizons in Occultation Research, Springer, Berlin, 285 – 295. CrossRefGoogle Scholar
  8. Dudok de Wit, T., Kretzschmar, M., Lilensten, J., Woods, T.: 2009, Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett. 361, L10107. doi:10.1029/2009GL037825. CrossRefGoogle Scholar
  9. Fontenla, J.M., Curdt, W., Haberreiter, M., Harder, J., Tian, H.: 2009, Semiempirical models of the solar atmosphere. III. Set of non-LTE models for far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482 – 502. doi:10.1088/0004-637X/707/1/482. ADSCrossRefGoogle Scholar
  10. Haberreiter, M., Schmutz, W., Hubeny, I.: 2008, NLTE model calculations for the solar atmosphere with an iterative treatment of opacity distribution functions. Astron. Astrophys. 492, 833 – 840. doi:10.1051/0004-6361:200809503. ADSCrossRefGoogle Scholar
  11. Hochedez, J.-F., Zhukov, A., Robbrecht, E., van der Linden, R., Berghmans, D., Vanlommel, P., Theissen, A., Clette, F.: 2005, Solar weather monitoring. Ann. Geophys. 23, 3149 – 3161. doi:10.5194/angeo-23-3149-2005. ADSCrossRefGoogle Scholar
  12. Hochedez, J.-F., Schmutz, W., Stockman, Y., Schühle, U., Benmoussa, A., Koller, S., Haenen, K., Berghmans, D., Defise, J.-M., Halain, J.-P., Theissen, A., Delouille, V., Slemzin, V., Gillotay, D., Fussen, D., Dominique, M., Vanhellemont, F., McMullin, D., Kretzschmar, M., Mitrofanov, A., Nicula, B., Wauters, L., Roth, H., Rozanov, E., Rüedi, I., Wehrli, C., Soltani, A., Amano, H., van der Linden, R., Zhukov, A., Clette, F., Koizumi, S., Mortet, V., Remes, Z., Petersen, R., Nesládek, M., D’Olieslaeger, M., Roggen, J., Rochus, P.: 2006, LYRA, a solar UV radiometer on PROBA2. Adv. Space Res. 37, 303 – 312. doi:10.1016/j.asr.2005.10.041. ADSCrossRefGoogle Scholar
  13. Judge, D.L., McMullin, D.R., Ogawa, H.S., Hovestadt, D., Klecker, B., Hilchenbach, M., Mobius, E., Canfield, L.R., Vest, R.E., Watts, R., Tarrio, C., Kuehne, M., Wurz, P.: 1998, First solar EUV irradiances obtained from SOHO by the CELIAS/SEM. Solar Phys. 177, 161 – 173. ADS:1998SoPh..177..161J, doi:10.1023/A:1004929011427. ADSCrossRefGoogle Scholar
  14. Koesterke, L., Allende Prieto, C., Lambert, D.L.: 2008, Center-to-limb variation of solar three-dimensional hydrodynamical simulations. Astrophys. J. 680, 764 – 773. doi:10.1086/587471. ADSCrossRefGoogle Scholar
  15. Krivova, N.A., Solanki, S.K., Wenzler, T., Podlipnik, B.: 2009, Reconstruction of solar UV irradiance since 1974. J. Geophys. Res. 114, D13. doi:10.1029/2009JD012375. CrossRefGoogle Scholar
  16. Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys. 230, 27 – 53. ADS:2005SoPh..230...27L, doi:10.1007/s11207-005-1527-2. ADSCrossRefGoogle Scholar
  17. Neckel, H.: 2005, Analytical reference functions F(λ) for the Sun’s limb darkening and its absolute continuum intensities (λλ 300 to 1100 m). Solar Phys. 229, 13 – 33. ADS:2005SoPh..229...13N, doi:10.1007/s11207-005-4081-z. ADSCrossRefGoogle Scholar
  18. Rottman, G.J., Woods, T.N., Sparn, T.P.: 1993, Solar-stellar irradiance comparison experiment 1. I – instrument design and operation. J. Geophys. Res. 98, 10667 – 10677. doi:10.1029/93JD00462. ADSCrossRefGoogle Scholar
  19. Schmutz, W., Fehlmann, A., Hülsen, G., Meindl, P., Winkler, R., Thuillier, G., Blattner, P., Buisson, F., Egorova, T., Finsterle, W., Fox, N., Gröbner, J., Hochedez, J.-F., Koller, S., Meftah, M., Meisonnier, M., Nyeki, S., Pfiffner, D., Roth, H., Rozanov, E., Spescha, M., Wehrli, C., Werner, L., Wyss, J.U.: 2009, The PREMOS/PICARD instrument calibration. Metrologia 46, 202 – 206. doi:10.1088/0026-1394/46/4/S13. ADSCrossRefGoogle Scholar
  20. Seaton, D., Berghmans, D., Nicula, B., Halain, J.P., De Groof, A., Thibert, T., Bloomfield, D.S., Raftery, C.L., Gallagher, P.T., Auchère, F., Defise, J.-M., D’Huys, E., Lecat, J.-H., Mazy, E., Rochus, P., Rossi, L., Schühle, U., Slemzin, V., Yalim, M.S., Zender, J.: 2013, The SWAP EUV imaging telescope part I: instrument overview and pre-flight testing. Solar Phys. doi:10.1007/s11207-012-0114-6. Google Scholar
  21. Shapiro, A.I., Schmutz, W., Schoell, M., Haberreiter, M., Rozanov, E.: 2010, NLTE solar irradiance modeling with the COSI code. Astron. Astrophys. 517, A48. doi:10.1051/0004-6361/200913987. ADSCrossRefGoogle Scholar
  22. Shapiro, A.I., Schmutz, W., Dominique, M., Shapiro, A.V.: 2013, Eclipses observed by LYRA – a sensitive tool to test the solar atmosphere models. Solar Phys. doi:10.1007/s11207-012-0063-0. MATHGoogle Scholar
  23. Van Doorsselaere, T., De Groof, A., Zender, J., Berghmans, D., Goossens, M.: 2011, LYRA observations of two oscillation modes in a single flare. Astrophys. J. 740, 90. doi:10.1088/0004-637X/740/2/90. ADSCrossRefGoogle Scholar
  24. Woodraska, D.L., Woods, T.N., Eparvier, F.G.: 2004, In-flight calibration and performance of the solar extreme ultraviolet experiment (SEE) aboard the TIMED satellite. In: Nardell, C.A., Lucey, P.G., Yee, J.H., Garvin, J.B. (eds.) SPIE CS-5660, 36 – 47. doi:10.1117/12.579034. Google Scholar
  25. Woods, T.N., Rottman, G.J., Ucker, G.J.: 1993, Solar-stellar irradiance comparison experiment 1. II – instrument calibrations. J. Geophys. Res. 98, 10679 – 10694. doi:10.1029/93JD00463. ADSCrossRefGoogle Scholar
  26. Woods, T., Eparvier, F., Hock, R., Jones, A., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., Mariska, J., Warren, H., McMullin, D., Chamberlin, P., Berthiaume, G., Bailey, S., Fuller-Rowell, T., Sojka, J., Tobiska, W., Viereck, R.: 2012, Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments. Solar Phys. 275, 115 – 143. ADS:2012SoPh..275..115W, doi:10.1007/s11207-009-9487-6. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Dominique
    • 1
  • J.-F. Hochedez
    • 1
    • 2
  • W. Schmutz
    • 3
  • I. E. Dammasch
    • 1
  • A. I. Shapiro
    • 3
  • M. Kretzschmar
    • 1
    • 4
  • A. N. Zhukov
    • 1
    • 5
  • D. Gillotay
    • 6
  • Y. Stockman
    • 7
  • A. BenMoussa
    • 1
  1. 1.Solar-Terrestrial Center of Excellence, SIDCRoyal Observatory of BelgiumBrusselsBelgium
  2. 2.LATMOSGuyancourtFrance
  3. 3.PMOD/WRCDavosSwitzerland
  4. 4.LPC2EUniversité d’OrléansOrléansFrance
  5. 5.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  6. 6.Belgian Institute for Space AeronomyBrusselsBelgium
  7. 7.Centre Spatial de LiègeLiègeBelgium

Personalised recommendations