Advertisement

Solar Physics

, Volume 282, Issue 2, pp 523–541 | Cite as

Multiwavelength Study of a Solar Eruption from AR NOAA 11112: II. Large-Scale Coronal Wave and Loop Oscillation

  • Pankaj KumarEmail author
  • K.-S. Cho
  • P. F. Chen
  • S.-C. Bong
  • Sung-Hong Park
Article

Abstract

We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 Å EUV images reveal the presence of a faster coronal wave (decelerating from ≈ 1390 to ≈ 830 km s−1) propagating ahead of a slower wave (decelerating from ≈ 416 to ≈ 166 km s−1) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed ≈ 800 km s−1). The speed of the faster coronal wave, derived from AIA 211 Å images, is found to be comparable to the coronal shock speed. AIA 171 Å high-cadence observations showed that a coronal loop, which was located at a distance of ≈ 0.32R to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of ≈ 340 – 350 km s−1. STEREO 195 Å images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from ≈ 320 to ≈ 254 km s−1. These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave.

Keywords

Solar flare – coronal loops Magnetic field Flux rope Magnetic reconnection 

Notes

Acknowledgements

We express our gratitude to the referee for his/her valuable and constructive comments/suggestions, which improved the manuscript considerably. SDO is a mission for NASA’s Living With a Star (LWS) Program. We thank the STEREO/SECCHI teams for their open data policy. We are thankful for the radio data obtained from Sagamore Hill station. SOHO is a project of international cooperation between ESA and NASA. PFC is supported by the Chinese foundation NSFC (11025314, 10878002, and 10933003) and 2011CB811402. PK thanks Prof. D.E. Innes for several fruitful discussions during his visit to MPS. PK thanks Dr. A.K. Srivastava for reading/discussing the manuscript. This work has been supported by the “Development of Korea Space Weather Center” project of KASI, and the KASI basic research fund.

Supplementary material

st195.avi (1.0 MB)

aia193.avi (3.9 MB)

aia211.avi (1.6 MB)

11207_2012_158_MOESM4_ESM.avi (2.2 mb)
aia171.avi (2.2 MB)

References

  1. Altschuler, M.D., Newkirk, G.: 1969, Magnetic fields and the structure of the solar corona. I: Methods of calculating coronal fields. Solar Phys. 9, 131 – 149. doi: 10.1007/BF00145734. ADSCrossRefGoogle Scholar
  2. Asai, A., Ishii, T.T., Isobe, H., Kitai, R., Ichimoto, K., UeNo, S., Nagata, S., Morita, S., Nishida, K., Shiota, D., Oi, A., Akioka, M., Shibata, K.: 2012, First simultaneous observation of an Hα Moreton wave, EUV wave, and filament/prominence oscillations. Astrophys. J. Lett. 745, L18. doi: 10.1088/2041-8205/745/2/L18. ADSCrossRefGoogle Scholar
  3. Aschwanden, M.J., Schrijver, C.J.: 2011, Coronal loop oscillations observed with Atmospheric Imaging Assembly-Kink mode with cross-sectional and density oscillations. Astrophys. J. 736, 102. doi: 10.1088/0004-637X/736/2/102. ADSCrossRefGoogle Scholar
  4. Attrill, G.D.R.: 2010, Dispelling illusions of reflection: A new analysis of the 2007 May 19 coronal “wave” event. Astrophys. J. 718, 494 – 501. doi: 10.1088/0004-637X/718/1/494. ADSCrossRefGoogle Scholar
  5. Biesecker, D.A., Myers, D.C., Thompson, B.J., Hammer, D.M., Vourlidas, A.: 2002, Solar phenomena associated with “EIT Waves”. Astrophys. J. 569, 1009 – 1015. doi: 10.1086/339402. ADSCrossRefGoogle Scholar
  6. Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357 – 402. doi: 10.1007/BF00733434. ADSCrossRefGoogle Scholar
  7. Chen, P.F.: 2006, The relation between EIT waves and solar flares. Astrophys. J. Lett. 641, L153 – L156. doi: 10.1086/503868. ADSCrossRefGoogle Scholar
  8. Chen, P.F.: 2009, The relation between EIT waves and coronal mass ejections. Astrophys. J. Lett. 698, L112 – L115. doi: 10.1088/0004-637X/698/2/L112. ADSCrossRefGoogle Scholar
  9. Chen, P.F.: 2011, Coronal mass ejections: Models and their observational basis. Living Rev. Solar Phys. 8, 1. ADSGoogle Scholar
  10. Chen, P.F., Fang, C.: 2011, “EIT waves” and coronal mass ejections. In: Choudhuri, A.R., Banerjee, D. (eds.) ASI CS-2, 229 – 239. Google Scholar
  11. Chen, P.F., Fang, C., Shibata, K.: 2005, A full view of EIT waves. Astrophys. J. 622, 1202 – 1210. doi: 10.1086/428084. ADSCrossRefGoogle Scholar
  12. Chen, P.F., Wu, Y.: 2011, First evidence of coexisting EIT wave and coronal Moreton wave from SDO/AIA observations. Astrophys. J. Lett. 732, L20. doi: 10.1088/2041-8205/732/2/L20. ADSCrossRefGoogle Scholar
  13. Chen, P.F., Wu, S.T., Shibata, K., Fang, C.: 2002, Evidence of EIT and Moreton waves in numerical simulations. Astrophys. J. Lett. 572, L99 – L102. doi: 10.1086/341486. ADSCrossRefGoogle Scholar
  14. Cho, K.S., Bong, S.C., Moon, Y.J., Shanmugaraju, A., Kwon, R.Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. doi: 10.1051/0004-6361/201015578. ADSCrossRefGoogle Scholar
  15. Cliver, E.W., Laurenza, M., Storini, M., Thompson, B.J.: 2005, On the origins of solar EIT waves. Astrophys. J. 631, 604 – 611. doi: 10.1086/432250. ADSCrossRefGoogle Scholar
  16. Dai, Y., Auchère, F., Vial, J.C., Tang, Y.H., Zong, W.G.: 2010, Large-scale extreme-ultraviolet disturbances associated with a limb coronal mass ejection. Astrophys. J. 708, 913 – 919. doi: 10.1088/0004-637X/708/2/913. ADSCrossRefGoogle Scholar
  17. Delaboudinière, J.P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi: 10.1007/BF00733432. ADSCrossRefGoogle Scholar
  18. Delannée, C., Aulanier, G.: 1999, CME associated with transequatorial loops and a bald patch flare. Solar Phys. 190, 107 – 129. doi: 10.1023/A:1005249416605. ADSCrossRefGoogle Scholar
  19. Eto, S., Isobe, H., Narukage, N., Asai, A., Morimoto, T., Thompson, B., Yashiro, S., Wang, T., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Relation between a Moreton wave and an EIT wave observed on 1997 November 4. Publ. Astron. Soc. Japan 54, 481 – 491. ADSGoogle Scholar
  20. Gallagher, P.T., Long, D.M.: 2011, Large-scale bright fronts in the solar corona: A review of “EIT waves”. Space Sci. Rev. 158, 365 – 396. doi: 10.1007/s11214-010-9710-7. ADSCrossRefGoogle Scholar
  21. Harra, L.K., Sterling, A.C.: 2003, Imaging and spectroscopic investigations of a solar coronal wave: Properties of the wave front and associated erupting material. Astrophys. J. 587, 429 – 438. doi: 10.1086/368079. ADSCrossRefGoogle Scholar
  22. Harra, L.K., Sterling, A.C., Gömöry, P., Veronig, A.: 2011, Spectroscopic observations of a coronal Moreton wave. Astrophys. J. Lett. 737, L4. doi: 10.1088/2041-8205/737/1/L4. ADSCrossRefGoogle Scholar
  23. Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., Thompson, W.T., St Cyr, O.C., Mentzell, E., Mehalick, K., Lemen, J.R., Wuelser, J.P., Duncan, D.W., Tarbell, T.D., Wolfson, C.J., Moore, A., Harrison, R.A., Waltham, N.R., Lang, J., Davis, C.J., Eyles, C.J., Mapson-Menard, H., Simnett, G.M., Halain, J.P., Defise, J.M., Mazy, E., Rochus, P., Mercier, R., Ravet, M.F., Delmotte, F., Auchere, F., Delaboudiniere, J.P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper, S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., Carter, T.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67 – 115. doi: 10.1007/s11214-008-9341-4. ADSCrossRefGoogle Scholar
  24. Hudson, H.S., Warmuth, A.: 2004, Coronal loop oscillations and flare shock waves. Astrophys. J. Lett. 614, L85 – L88. doi: 10.1086/425314. ADSCrossRefGoogle Scholar
  25. Hudson, H.S., Khan, J.I., Lemen, J.R., Nitta, N.V., Uchida, Y.: 2003, Soft X-ray observation of a large-scale coronal wave and its exciter. Solar Phys. 212, 121 – 149. doi: 10.1023/A:1022904125479. ADSCrossRefGoogle Scholar
  26. Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 – 16. doi: 10.1007/s11214-007-9277-0. ADSCrossRefGoogle Scholar
  27. Khan, J.I., Aurass, H.: 2002, X-ray observations of a large-scale solar coronal shock wave. Astron. Astrophys. 383, 1018 – 1031. doi: 10.1051/0004-6361:20011707. ADSCrossRefGoogle Scholar
  28. Kienreich, I.W., Temmer, M., Veronig, A.M.: 2009, STEREO quadrature observations of the three-dimensional structure and driver of a global coronal wave. Astrophys. J. Lett. 703, L118 – L122. doi: 10.1088/0004-637X/703/2/L118. ADSCrossRefGoogle Scholar
  29. Kienreich, I.W., Veronig, A.M., Muhr, N., Temmer, M., Vršnak, B., Nitta, N.: 2011, Case study of four homologous large-scale coronal waves observed on 2010 April 28 and 29. Astrophys. J. Lett. 727, L43. doi: 10.1088/2041-8205/727/2/L43. ADSCrossRefGoogle Scholar
  30. Klassen, A., Pohjolainen, S., Klein, K.L.: 2003, Type II radio precursor and X-ray flare emission. Solar Phys. 218, 197 – 210. doi: 10.1023/B:SOLA.0000013034.61996.c4. ADSCrossRefGoogle Scholar
  31. Klassen, A., Karlický, M., Aurass, H., Jiřička, K.: 1999, On two distinct shocks during the flare of 9 July 1996. Solar Phys. 188, 141 – 154. ADSCrossRefGoogle Scholar
  32. Klassen, A., Aurass, H., Mann, G., Thompson, B.J.: 2000, Catalogue of the 1997 SOHO-EIT coronal transient waves and associated type II radio burst spectra. Astron. Astrophys. Suppl. Ser. 141, 357 – 369. doi: 10.1051/aas:2000125. ADSCrossRefGoogle Scholar
  33. Klein, K.L., Khan, J.I., Vilmer, N., Delouis, J.M., Aurass, H.: 1999, X-ray and radio evidence on the origin of a coronal shock wave. Astron. Astrophys. 346, 53 – 56. ADSGoogle Scholar
  34. Kumar, P., Park, S.-H., Cho, K.-S., Bong, S.-C.: 2012, Multiwavelength study of a solar eruption from AR NOAA 11112 I. Flux emergence, sunspot rotation and triggering of a solar flare. Solar Phys. accepted. arXiv:1210.3413. ADS:2012arXiv1210.3413K.
  35. Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., Hurlburt, N.E., Katz, N.L., Kushner, G.D., Levay, M., Lindgren, R.W., Mathur, D.P., McFeaters, E.L., Mitchell, S., Rehse, R.A., Schrijver, C.J., Springer, L.A., Stern, R.A., Tarbell, T.D., Wuelser, J.P., Wolfson, C.J., Yanari, C., Bookbinder, J.A., Cheimets, P.N., Caldwell, D., Deluca, E.E., Gates, R., Golub, L., Park, S., Podgorski, W.A., Bush, R.I., Scherrer, P.H., Gummin, M.A., Smith, P., Auker, G., Jerram, P., Pool, P., Soufli, R., Windt, D.L., Beardsley, S., Clapp, M., Lang, J., Waltham, N.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17 – 40. doi: 10.1007/s11207-011-9776-8. ADSCrossRefGoogle Scholar
  36. Magara, T., Chen, P., Shibata, K., Yokoyama, T.: 2000, A unified model of coronal mass ejection-related type II radio bursts. Astrophys. J. Lett. 538, L175 – L178. doi: 10.1086/312813. ADSCrossRefGoogle Scholar
  37. Magdalenić, J., Vršnak, B., Pohjolainen, S., Temmer, M., Aurass, H., Lehtinen, N.J.: 2008, A flare-generated shock during a coronal mass ejection on 24 December 1996. Solar Phys. 253, 305 – 317. doi: 10.1007/s11207-008-9220-x. ADSCrossRefGoogle Scholar
  38. Magdalenić, J., Marqué, C., Zhukov, A.N., Vršnak, B., Žic, T.: 2010, Origin of coronal shock waves associated with slow coronal mass ejections. Astrophys. J. 718, 266 – 278. doi: 10.1088/0004-637X/718/1/266. ADSCrossRefGoogle Scholar
  39. Moreton, G.E., Ramsey, H.E.: 1960, Recent observations of dynamical phenomena associated with solar flares. Publ. Astron. Soc. Pac. 72, 357. doi: 10.1086/127549. ADSCrossRefGoogle Scholar
  40. Muhr, N., Vršnak, B., Temmer, M., Veronig, A.M., Magdalenić, J.: 2010, Analysis of a global Moreton wave observed on 2003 October 28. Astrophys. J. 708, 1639 – 1649. doi: 10.1088/0004-637X/708/2/1639. ADSCrossRefGoogle Scholar
  41. Muhr, N., Veronig, A.M., Kienreich, I.W., Temmer, M., Vršnak, B.: 2011, Analysis of characteristic parameters of large-scale coronal waves observed by the Solar-Terrestrial Relations Observatory/Extreme Ultraviolet Imager. Astrophys. J. 739, 89. doi: 10.1088/0004-637X/739/2/89. ADSCrossRefGoogle Scholar
  42. Narukage, N., Hudson, H.S., Morimoto, T., Akiyama, S., Kitai, R., Kurokawa, H., Shibata, K.: 2002, Simultaneous observation of a Moreton wave on 1997 November 3 in Hα and soft X-rays. Astrophys. J. Lett. 572, L109 – L112. doi: 10.1086/341599. ADSCrossRefGoogle Scholar
  43. Newkirk, G. Jr.: 1961, The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983 – 1013. doi: 10.1086/147104. ADSCrossRefGoogle Scholar
  44. Patsourakos, S., Vourlidas, A.: 2009, “Extreme Ultraviolet Waves” are waves: First quadrature observations of an extreme ultraviolet wave from STEREO. Astrophys. J. Lett. 700, L182 – L186. doi: 10.1088/0004-637X/700/2/L182. ADSCrossRefGoogle Scholar
  45. Patsourakos, S., Vourlidas, A., Wang, Y.M., Stenborg, G., Thernisien, A.: 2009, What is the nature of EUV waves? First STEREO 3D observations and comparison with theoretical models. Solar Phys. 259, 49 – 71. doi: 10.1007/s11207-009-9386-x. ADSCrossRefGoogle Scholar
  46. Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3 – 15. doi: 10.1007/s11207-011-9841-3. ADSCrossRefGoogle Scholar
  47. Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, A model of interplanetary and coronal magnetic fields. Solar Phys. 6, 442 – 455. doi: 10.1007/BF00146478. ADSCrossRefGoogle Scholar
  48. Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Akin, D.J., Allard, B.A., Miles, J.W., Rairden, R., Shine, R.A., Tarbell, T.D., Title, A.M., Wolfson, C.J., Elmore, D.F., Norton, A.A., Tomczyk, S.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229 – 259. doi: 10.1007/s11207-011-9842-2. ADSCrossRefGoogle Scholar
  49. Smith, S.F., Harvey, K.L.: 1971, Observational effects of flare-associated waves. In: Macris, C.J. (ed.) Physics of the Solar Corona, Astrophys. Space Sci. Lib. 27, 156. Google Scholar
  50. Straka, R.M., Castelli, J.P.: 1970, Observations at the Sagamore Hill solar radio observatory. Nature 226, 1149 – 1152. doi: 10.1038/2261149a0. ADSCrossRefGoogle Scholar
  51. Thompson, B.J., Plunkett, S.P., Gurman, J.B., Newmark, J.S., St. Cyr, O.C., Michels, D.J.: 1998, SOHO/EIT observations of an Earth-directed coronal mass ejection on May 12, 1997. Geophys. Res. Lett. 25, 2465 – 2468. doi: 10.1029/98GL50429. ADSCrossRefGoogle Scholar
  52. Thompson, B.J., Gurman, J.B., Neupert, W.M., Newmark, J.S., Delaboudinière, J.P., St. Cyr, O.C., Stezelberger, S., Dere, K.P., Howard, R.A., Michels, D.J.: 1999, SOHO/EIT observations of the 1997 April 7 coronal transient: Possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, L151 – L154. doi: 10.1086/312030. ADSCrossRefGoogle Scholar
  53. Thompson, B.J., Reynolds, B., Aurass, H., Gopalswamy, N., Gurman, J.B., Hudson, H.S., Martin, S.F., St. Cyr, O.C.: 2000, Observations of the 24 September 1997 coronal flare waves. Solar Phys. 193, 161 – 180. ADSCrossRefGoogle Scholar
  54. Uchida, Y.: 1968, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Solar Phys. 4, 30 – 44. doi: 10.1007/BF00146996. ADSCrossRefGoogle Scholar
  55. Uchida, Y.: 1970, Diagnosis of coronal magnetic structure by flare-associated hydromagnetic disturbances. Publ. Astron. Soc. Japan 22, 341. ADSGoogle Scholar
  56. Uchida, Y.: 1974, Behavior of the flare produced coronal MHD wavefront and the occurrence of type II radio bursts. Solar Phys. 39, 431 – 449. doi: 10.1007/BF00162436. ADSCrossRefGoogle Scholar
  57. Veronig, A.M., Temmer, M., Vršnak, B.: 2008, High-cadence observations of a global coronal wave by STEREO EUVI. Astrophys. J. Lett. 681, L113 – L116. doi: 10.1086/590493. ADSCrossRefGoogle Scholar
  58. Veronig, A.M., Temmer, M., Vršnak, B., Thalmann, J.K.: 2006, Interaction of a Moreton/EIT wave and a coronal hole. Astrophys. J. 647, 1466 – 1471. doi: 10.1086/505456. ADSCrossRefGoogle Scholar
  59. Veronig, A.M., Muhr, N., Kienreich, I.W., Temmer, M., Vršnak, B.: 2010, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, L57 – L62. doi: 10.1088/2041-8205/716/1/L57. ADSCrossRefGoogle Scholar
  60. Veronig, A.M., Gomory, P., Kienreich, I.W., Muhr, N., Vršnak, B., Temmer, M., Warren, H.P.: 2011, Plasma diagnostics of an EIT wave observed by Hinode/EIS and SDO/AIA. Astrophys. J. Lett. 743, L10. ADSCrossRefGoogle Scholar
  61. Vršnak, B., Cliver, E.W.: 2008, Origin of coronal shock waves: Invited review. Solar Phys. 253, 215 – 235. doi: 10.1007/s11207-008-9241-5. ADSCrossRefGoogle Scholar
  62. Vršnak, B., Lulić, S.: 2000a, Formation of coronal MHD shock waves – I. The basic mechanism. Solar Phys. 196, 157 – 180. ADSCrossRefGoogle Scholar
  63. Vršnak, B., Lulić, S.: 2000b, Formation of coronal MHD shock waves – II. The pressure pulse mechanism. Solar Phys. 196, 181 – 197. ADSCrossRefGoogle Scholar
  64. Vršnak, B., Ruždjak, V., Zlobec, P., Aurass, H.: 1995, Ignition of MHD shocks associated with solar flares. Solar Phys. 158, 331 – 351. doi: 10.1007/BF00795667. ADSGoogle Scholar
  65. Vršnak, B., Warmuth, A., Brajša, R., Hanslmeier, A.: 2002, Flare waves observed in Helium I 10 830 Å. A link between Hα Moreton and EIT waves. Astron. Astrophys. 394, 299 – 310. doi: 10.1051/0004-6361:20021121. ADSCrossRefGoogle Scholar
  66. Wang, Y.M.: 2000, EIT waves and fast-mode propagation in the solar corona. Astrophys. J. Lett. 543, L89 – L93. doi: 10.1086/318178. ADSCrossRefGoogle Scholar
  67. Warmuth, A.: 2007, Large-scale waves and shocks in the solar corona. In: Klein, K.-L., MacKinnon, A.L. (eds.) Lecture Notes in Physics 725, Springer, Berlin, 107. Google Scholar
  68. Warmuth, A.: 2010, Large-scale waves in the solar corona: The continuing debate. Adv. Space Res. 45, 527 – 536. doi: 10.1016/j.asr.2009.08.022. ADSCrossRefGoogle Scholar
  69. Warmuth, A., Mann, G.: 2011, Kinematical evidence for physically different classes of large-scale coronal EUV waves. Astron. Astrophys. 532, A151. doi: 10.1051/0004-6361/201116685. ADSCrossRefGoogle Scholar
  70. Warmuth, A., Mann, G., Aurass, H.: 2005, First soft X-ray observations of global coronal waves with the GOES solar X-ray Imager. Astrophys. J. Lett. 626, L121 – L124. doi: 10.1086/431756. ADSCrossRefGoogle Scholar
  71. Warmuth, A., Vršnak, B., Aurass, H., Hanslmeier, A.: 2001, Evolution of two EIT/Hα Moreton waves. Astrophys. J. Lett. 560, L105 – L109. doi: 10.1086/324055. ADSCrossRefGoogle Scholar
  72. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004a, A multiwavelength study of solar flare waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101 – 1115. doi: 10.1051/0004-6361:20034332. ADSCrossRefGoogle Scholar
  73. Warmuth, A., Vršnak, B., Magdalenić, J., Hanslmeier, A., Otruba, W.: 2004b, A multiwavelength study of solar flare waves. II. Perturbation characteristics and physical interpretation. Astron. Astrophys. 418, 1117 – 1129. doi: 10.1051/0004-6361:20034333. ADSCrossRefGoogle Scholar
  74. Wills-Davey, M.J., Attrill, G.D.R.: 2009, EIT Waves: A changing understanding over a solar cycle. Space Sci. Rev. 149, 325 – 353. doi: 10.1007/s11214-009-9612-8. ADSCrossRefGoogle Scholar
  75. Wu, S.T., Zheng, H., Wang, S., Thompson, B.J., Plunkett, S.P., Zhao, X.P., Dryer, M.: 2001, Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope. J. Geophys. Res. 106, 25089 – 25102. doi: 10.1029/2000JA000447. ADSCrossRefGoogle Scholar
  76. Wuelser, J.P., Lemen, J.R., Tarbell, T.D., Wolfson, C.J., Cannon, J.C., Carpenter, B.A., Duncan, D.W., Gradwohl, G.S., Meyer, S.B., Moore, A.S., Navarro, R.L., Pearson, J.D., Rossi, G.R., Springer, L.A., Howard, R.A., Moses, J.D., Newmark, J.S., Delaboudiniere, J.P., Artzner, G.E., Auchere, F., Bougnet, M., Bouyries, P., Bridou, F., Clotaire, J.Y., Colas, G., Delmotte, F., Jerome, A., Lamare, M., Mercier, R., Mullot, M., Ravet, M.F., Song, X., Bothmer, V., Deutsch, W.: 2004, EUVI: the STEREO-SECCHI extreme ultraviolet imager. In: Fineschi, S., Gummin, M.A. (eds.) SPIE CS-5171, 111 – 122. doi: 10.1117/12.506877. Google Scholar
  77. Zhukov, A.N.: 2011, EIT wave observations and modeling in the STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1096 – 1116. doi: 10.1016/j.jastp.2010.11.030. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Pankaj Kumar
    • 1
    Email author
  • K.-S. Cho
    • 1
    • 2
    • 3
  • P. F. Chen
    • 4
  • S.-C. Bong
    • 1
  • Sung-Hong Park
    • 1
  1. 1.Korea Astronomy and Space Science Institute (KASI)DaejeonRepublic of Korea
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Department of PhysicsThe Catholic University of AmericaWashingtonUSA
  4. 4.School of Astronomy and Space ScienceNanjing UniversityNanjingChina

Personalised recommendations