Solar Physics

, Volume 282, Issue 1, pp 67–86 | Cite as

Nature of Quiet Sun Oscillations Using Data from the Hinode, TRACE, and SOHO Spacecraft

  • G. R. GuptaEmail author
  • S. Subramanian
  • D. Banerjee
  • M. S. Madjarska
  • J. G. Doyle


We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2 – 4 minutes, 4 – 6 minutes, 6 – 15 minutes, and beyond 15 minutes. We detect the presence of long-period oscillations with periods between 15 and 30 minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.


Chromosphere, quiet Transition region Oscillations MHD waves 



We thank the referee for their careful reading and valuable suggestions which has enabled us to improve the manuscript substantially. Research at Armagh Observatory is grant-aided by the N. Ireland Dept. of Culture, Arts and Leisure. We thank STFC for support via ST/J001082/1. The Transition Region and Coronal Explorer (TRACE) is a mission of the Stanford–Lockheed Institute for Space Research, and part of the NASA Small Explorer program. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway).

Supplementary material

11207_2012_146_MOESM1_ESM.mpeg (2.7 mb)
\(\mathsf{mdi\_tr\_full.mpeg}\) (MPEG 2.7 MB)

\(\mathsf{mdi\_tr\_small.mpeg}\) (MPEG 864 kB)


  1. Banerjee, D., O’Shea, E., Doyle, J.G.: 2000, Long-period oscillations in polar plumes as observed by cds on SOHO. Solar Phys. 196, 63 – 78. ADSCrossRefGoogle Scholar
  2. Banerjee, D., O’Shea, E., Doyle, J.G., Goossens, M.: 2001, The nature of network oscillations. Astron. Astrophys. 371, 1137 – 1149. doi: 10.1051/0004-6361:20010426. ADSCrossRefGoogle Scholar
  3. Banerjee, D., Teriaca, L., Gupta, G.R., Imada, S., Stenborg, G., Solanki, S.K.: 2009, Propagating waves in polar coronal holes as seen by SUMER and EIS. Astron. Astrophys. 499, L29 – L32. doi: 10.1051/0004-6361/200912059. ADSCrossRefGoogle Scholar
  4. Beckers, J.M.: 1972, Solar spicules. Ann. Rev. Astron. Astrophys. 10, 73 – 100. doi: 10.1146/annurev.aa.10.090172.000445. ADSCrossRefGoogle Scholar
  5. Carlsson, M., Judge, P.G., Wilhelm, K.: 1997, SUMER observations confirm the dynamic nature of the quiet solar outer atmosphere: the internetwork chromosphere. Astrophys. J. Lett. 486, L63. doi: 10.1086/310836. ADSCrossRefGoogle Scholar
  6. Damé, L., Gouttebroze, P., Malherbe, J.: 1984, Observation and analysis of intensity oscillations in the solar K-line. Astron. Astrophys. 130, 331 – 340. ADSGoogle Scholar
  7. De Pontieu, B., Erdélyi, R., James, S.P.: 2004, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536 – 539. doi: 10.1038/nature02749. ADSCrossRefGoogle Scholar
  8. de Wijn, A.G., Rutten, R.J., Haverkamp, E.M.W.P., Sütterlin, P.: 2005, DOT tomography of the solar atmosphere. IV. Magnetic patches in internetwork areas. Astron. Astrophys. 441, 1183 – 1190. doi: 10.1051/0004-6361:20053373. ADSCrossRefGoogle Scholar
  9. De Wijn, A.G., Rutten, R.J., Tarbell, T.D.: 2005, Dynamics of the solar chromosphere. V. High-frequency modulation in ultraviolet image sequences from TRACE. Astron. Astrophys. 430, 1119 – 1127. doi: 10.1051/0004-6361:20041727. ADSCrossRefGoogle Scholar
  10. DeForest, C.E., Gurman, J.B.: 1998, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, L217. doi: 10.1086/311460. ADSCrossRefGoogle Scholar
  11. Doyle, J.G., van den Oord, G.H.J., O’Shea, E., Banerjee, D.: 1999, Exploring the dynamical nature of the lower solar chromosphere. Astron. Astrophys. 347, 335 – 347. ADSGoogle Scholar
  12. Fossum, A., Carlsson, M.: 2005, High-frequency acoustic waves are not sufficient to heat the solar chromosphere. Nature 435, 919 – 921. doi: 10.1038/nature03695. ADSCrossRefGoogle Scholar
  13. Gabriel, A.H.: 1976, A magnetic model of the solar transition region. Roy. Soc. London Phil. Trans. Ser. A 281, 339 – 352. ADSCrossRefGoogle Scholar
  14. Gupta, G.R., Banerjee, D., Teriaca, L., Imada, S., Solanki, S.: 2010, Accelerating waves in polar coronal holes as seen by EIS and SUMER. Astrophys. J. 718, 11 – 22. doi: 10.1088/0004-637X/718/1/11. ADSCrossRefGoogle Scholar
  15. Gupta, G.R., O’Shea, E., Banerjee, D., Popescu, M., Doyle, J.G.: 2009, On the statistical detection of propagating waves in polar coronal holes. Astron. Astrophys. 493, 251 – 257. doi: 10.1051/0004-6361:200810602. ADSCrossRefGoogle Scholar
  16. Hale, G.E., Ellerman, F.: 1904, Calcium and hydrogen flocculi. Astrophys. J. 19, 41 – 52. doi: 10.1086/141083. ADSCrossRefGoogle Scholar
  17. Handy, B.N., Acton, L.W., Kankelborg, C.C., Wolfson, C.J., Akin, D.J., Bruner, M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G., Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E., Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay, M., Lindgren, R.W., Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope, T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D., Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets, P.N., Davis, W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R., Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar Phys. 187, 229 – 260. doi: 10.1023/A:1005166902804. ADSCrossRefGoogle Scholar
  18. Hasan, S.S.: 2008, Chromospheric dynamics. Adv. Space Res. 42, 86 – 95. doi: 10.1016/j.asr.2007.08.019. ADSCrossRefGoogle Scholar
  19. Jefferies, S.M., McIntosh, S.W., Armstrong, J.D., Bogdan, T.J., Cacciani, A., Fleck, B.: 2006, Magnetoacoustic portals and the basal heating of the solar chromosphere. Astrophys. J. Lett. 648, L151 – L155. doi: 10.1086/508165. ADSCrossRefGoogle Scholar
  20. Judge, P.G., Tarbell, T.D., Wilhelm, K.: 2001, A study of chromospheric oscillations using the SOHO and TRACE spacecraft. Astrophys. J. 554, 424 – 444. doi: 10.1086/321383. ADSCrossRefGoogle Scholar
  21. Kontogiannis, I., Tsiropoula, G., Tziotziou, K.: 2010, Power halo and magnetic shadow in a solar quiet region observed in the Hα line. Astron. Astrophys. 510, A41. doi: 10.1051/0004-6361/200912841. ADSCrossRefGoogle Scholar
  22. Krijger, J.M., Rutten, R.J., Lites, B.W., Straus, T., Shine, R.A., Tarbell, T.D.: 2001, Dynamics of the solar chromosphere. III. Ultraviolet brightness oscillations from TRACE. Astron. Astrophys. 379, 1052 – 1082. doi: 10.1051/0004-6361:20011320. ADSCrossRefGoogle Scholar
  23. Lawrence, J.K., Cadavid, A.C.: 2010, Space–time distribution of G-band and Ca ii H-line intensity oscillations in Hinode/SOT – FG Observations. Solar Phys. 261, 35 – 52. doi: 10.1007/s11207-009-9481-z. ADSCrossRefGoogle Scholar
  24. Lites, B.W., Rutten, R.J., Kalkofen, W.: 1993, Dynamics of the solar chromosphere. I – Long-period network oscillations. Astrophys. J. 414, 345 – 356. doi: 10.1086/173081. ADSCrossRefGoogle Scholar
  25. Mariska, J.T., Muglach, K.: 2010, Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on Hinode. Astrophys. J. 713, 573 – 583. doi: 10.1088/0004-637X/713/1/573. ADSCrossRefGoogle Scholar
  26. McIntosh, S.W., Judge, P.G.: 2001, On the nature of magnetic shadows in the solar chromosphere. Astrophys. J. 561, 420 – 426. doi: 10.1086/323068. ADSCrossRefGoogle Scholar
  27. Ofman, L., Nakariakov, V.M., DeForest, C.E.: 1999, Slow magnetosonic waves in coronal plumes. Astrophys. J. 514, 441 – 447. doi: 10.1086/306944. ADSCrossRefGoogle Scholar
  28. O’Shea, E., Banerjee, D., Doyle, J.G.: 2006, Magnetoacoustic wave propagation in off-limb polar regions. Astron. Astrophys. 452, 1059 – 1068. doi: 10.1051/0004-6361:20053687. ADSCrossRefGoogle Scholar
  29. O’Shea, E., Banerjee, D., Doyle, J.G.: 2007, A statistical study of wave propagation in coronal holes. Astron. Astrophys. 463, 713 – 725. doi: 10.1051/0004-6361:20065592. ADSCrossRefGoogle Scholar
  30. Rutten, R.J., de Wijn, A.G., Sütterlin, P.: 2004, DOT tomography of the solar atmosphere. II. Reversed granulation in Ca ii H. Astron. Astrophys. 416, 333 – 340. doi: 10.1051/0004-6361:20035636. ADSCrossRefGoogle Scholar
  31. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. (MDI Engineering Team): 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188. doi: 10.1007/BF00733429. ADSCrossRefGoogle Scholar
  32. Simon, G.W., Leighton, R.B.: 1964, Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120 – 1147. doi: 10.1086/148010. ADSCrossRefGoogle Scholar
  33. Skumanich, A., Smythe, C., Frazier, E.N.: 1975, On the statistical description of inhomogeneities in the quiet solar atmosphere. I – Linear regression analysis and absolute calibration of multichannel observations of the Ca/+/ emission network. Astrophys. J. 200, 747 – 764. doi: 10.1086/153846. ADSCrossRefGoogle Scholar
  34. Tian, H., Xia, L.: 2008, Network oscillations at the boundary of an equatorial coronal hole. Astron. Astrophys. 488, 331 – 337. doi: 10.1051/0004-6361:200810124. ADSCrossRefGoogle Scholar
  35. Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Met. Soc. 79, 61 – 78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. CrossRefGoogle Scholar
  36. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L.D., Owens, J.K.: 2008, The solar optical telescope for the Hinode mission: an overview. Solar Phys. 249, 167 – 196. doi: 10.1007/s11207-008-9174-z. ADSCrossRefGoogle Scholar
  37. Vecchio, A., Cauzzi, G., Reardon, K.P., Janssen, K., Rimmele, T.: 2007, Solar atmospheric oscillations and the chromospheric magnetic topology. Astron. Astrophys. 461, L1 – L4. doi: 10.1051/0004-6361:20066415. ADSCrossRefGoogle Scholar
  38. Wikstøl, Ø., Hansteen, V.H., Carlsson, M., Judge, P.G.: 2000, Chromospheric and transition region internetwork oscillations: a signature of upward-propagating waves. Astrophys. J. 531, 1150 – 1160. doi: 10.1086/308475. ADSCrossRefGoogle Scholar
  39. Zaqarashvili, T.V., Erdélyi, R.: 2009, Oscillations and waves in solar spicules. Space Sci. Rev. 149, 355 – 388. doi: 10.1007/s11214-009-9549-y. ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • G. R. Gupta
    • 1
    • 2
    • 3
    Email author
  • S. Subramanian
    • 4
  • D. Banerjee
    • 1
  • M. S. Madjarska
    • 4
  • J. G. Doyle
    • 4
  1. 1.Indian Institute of AstrophysicsBangaloreIndia
  2. 2.Joint Astronomy ProgrammeIndian Institute of ScienceBangaloreIndia
  3. 3.Max Planck Institute for Solar System ResearchKatlenburg-LindauGermany
  4. 4.Armagh ObservatoryArmaghN. Ireland

Personalised recommendations