Advertisement

Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues

  • 277 Accesses

  • 61 Citations

Abstract

Bipolar active regions (ARs) are thought to be formed by twisted flux tubes, as the presence of such twist is theoretically required for a cohesive rise through the whole convective zone. We use longitudinal magnetograms to demonstrate that a clear signature of a global magnetic twist is present, particularly, during the emergence phase when the AR is forming in a much weaker pre-existing magnetic field environment. The twist is characterised by the presence of elongated polarities, called “magnetic tongues”, which originate from the azimuthal magnetic field component. The tongues first extend in size before retracting when the maximum magnetic flux is reached. This implies an apparent rotation of the magnetic bipole. Using a simple half-torus model of an emerging twisted flux tube having a uniform twist profile, we derive how the direction of the polarity inversion line and the elongation of the tongues depend on the global twist in the flux rope. Using a sample of 40 ARs, we verify that the helicity sign, determined from the magnetic polarity distribution pattern, is consistent with the sign derived from the photospheric helicity flux computed from magnetogram time series, as well as from other proxies such as sheared coronal loops, sigmoids, flare ribbons and/or the associated magnetic cloud observed in situ at 1 AU. The evolution of the tongues observed in emerging ARs is also closely similar to the evolution found in recent MHD numerical simulations. We also found that the elongation of the tongue formed by the leading magnetic polarity is significantly larger than that of the following polarity. This newly discovered asymmetry is consistent with an asymmetric Ω-loop emergence, trailing the solar rotation, which was proposed earlier to explain other asymmetries in bipolar ARs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. Abbett, W.P., Fisher, G.H., Fan, Y.: 2001, The effects of rotation on the evolution of rising omega loops in a stratified model convection zone. Astrophys. J. 546, 1194 – 1203. doi:10.1086/318320.

  2. Archontis, V., Hood, A.W.: 2010, Flux emergence and coronal eruption. Astron. Astrophys. 514, A56. doi:10.1051/0004-6361/200913502.

  3. Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E.: 2004, Emergence of magnetic flux from the convection zone into the corona. Astron. Astrophys. 426, 1047 – 1063. doi:10.1051/0004-6361:20035934.

  4. Archontis, V., Hood, A.W., Savcheva, A., Golub, L., Deluca, E.: 2009, On the structure and evolution of complexity in sigmoids: a flux emergence model. Astrophys. J. 691, 1276 – 1291. doi:10.1088/0004-637X/691/2/1276.

  5. Asai, A., Shibata, K., Ishii, T.T., Oka, M., Kataoka, R., Fujiki, K., Gopalswamy, N.: 2009, Evolution of the anemone AR NOAA 10798 and the related geo-effective flares and CMEs. J. Geophys. Res. 114, A00A21. doi:10.1029/2008JA013291.

  6. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Démoulin, P.: 2007, Coronal “wave”: magnetic footprint of a coronal mass ejection? Astrophys. J. Lett. 656, 101 – 104. doi:10.1086/512854.

  7. Aulanier, G., Török, T., Démoulin, P., DeLuca, E.E.: 2010, Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys. J. 708, 314 – 333. doi:10.1088/0004-637X/708/1/314.

  8. Berdichevsky, D.B., Farrugia, C.J., Thompson, B.J., Lepping, R.P., Reames, D.V., Kaiser, M.L., Steinberg, J.T., Plunkett, S.P., Michels, D.J.: 2002, Halo-coronal mass ejections near the 23rd solar minimum: Lift-off, inner heliosphere, and in situ (1 AU) signatures. Ann. Geophys. 20, 891 – 916. doi:10.5194/angeo-20-891-2002.

  9. Burnette, A.B., Canfield, R.C., Pevtsov, A.A.: 2004, Photospheric and coronal currents in solar active regions. Astrophys. J. 606, 565 – 570. doi:10.1086/382775.

  10. Caligari, P., Moreno-Insertis, F., Schussler, M.: 1995, Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886 – 902. doi:10.1086/175410.

  11. Canfield, R.C., Hudson, H.S., McKenzie, D.E.: 1999, Sigmoidal morphology and eruptive solar activity. Geophys. Res. Lett. 26, 627 – 630. doi:10.1029/1999GL900105.

  12. Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., Li, H.: 2009, Evidence for a pre-eruptive twisted flux rope using the THEMIS vector magnetograph. Astrophys. J. Lett. 693, 27 – 30. doi:10.1088/0004-637X/693/1/L27.

  13. Chae, J.: 2001, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560, 95 – 98. doi:10.1086/324173.

  14. Chae, J., Moon, Y.J., Park, Y.D.: 2004, Determination of magnetic helicity content of solar active regions from SOHO/MDI magnetograms. Solar Phys. 223, 39 – 55. doi:10.1007/s11207-004-0938-9.

  15. Chandra, R., Schmieder, B., Aulanier, G., Malherbe, J.M.: 2009, Evidence of magnetic helicity in emerging flux and associated flare. Solar Phys. 258, 53 – 67. doi:10.1007/s11207-009-9392-z.

  16. Chandra, R., Pariat, E., Schmieder, B., Mandrini, C.H., Uddin, W.: 2010, How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? Solar Phys. 261, 127 – 148. doi:10.1007/s11207-009-9470-2.

  17. Cheung, M., Schüssler, M., Moreno-Insertis, F.: 2005, 3D magneto-convection and flux emergence in the photosphere. In: Innes, D.E., Lagg, A., Solanki, S.A. (eds.) Chromospheric and Coronal Magnetic Fields, ESA SP-596, paper 54.1 (on CDROM).

  18. Cheung, M.C.M., Moreno-Insertis, F., Schüssler, M.: 2006, Moving magnetic tubes: fragmentation, vortex streets and the limit of the approximation of thin flux tubes. Astron. Astrophys. 451, 303 – 317. doi:10.1051/0004-6361:20054499.

  19. Cheung, M.C.M., Schüssler, M., Tarbell, T.D., Title, A.M.: 2008, Solar surface emerging flux regions: A comparative study of radiative MHD modeling and Hinode SOT observations. Astrophys. J. 687, 1373 – 1387. doi:10.1086/591245.

  20. Cristiani, G., Martinez, G., Mandrini, C.H., Giménez de Castro, C.G., da Silva, C.W., Rovira, M.G., Kaufmann, P.: 2007, Spatial characterisation of a flare using radio observations and magnetic field topology. Solar Phys. 240, 271 – 281. doi:10.1007/s11207-006-0337-5.

  21. Cristiani, G., Giménez de Castro, C.G., Mandrini, C.H., Machado, M.E., Silva, I.D.B.E., Kaufmann, P., Rovira, M.G.: 2008, A solar burst with a spectral component observed only above 100 GHz during an M class flare. Astron. Astrophys. 492, 215 – 222. doi:10.1051/0004-6361:200810367.

  22. Delaboudiniére, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., et al.: 1995, EIT: Extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys. 162, 291 – 312. doi:10.1007/BF00733432.

  23. Démoulin, P., Pariat, E.: 2009, Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43, 1013 – 1031. doi:10.1016/j.asr.2008.12.004.

  24. Démoulin, P., Priest, E.R., Lonie, D.P.: 1996, Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. J. Geophys. Res. 101, 7631 – 7646. doi:10.1029/95JA03558.

  25. Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650 – 665. doi:10.1051/0004-6361:20011634.

  26. Emonet, T., Moreno-Insertis, F.: 1998, The physics of twisted magnetic tubes rising in a stratified medium: two-dimensional results. Astrophys. J. 492, 804 – 821. doi:10.1086/305074.

  27. Fan, Y.: 2008, The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676, 680 – 697. doi:10.1086/527317.

  28. Fan, Y.: 2009, The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697, 1529 – 1542. doi:10.1088/0004-637X/697/2/1529.

  29. Fan, Y., Fisher, G.H., Deluca, E.E.: 1993, The origin of morphological asymmetries in bipolar active regions. Astrophys. J. 405, 390 – 401. doi:10.1086/172370.

  30. Georgoulis, M.K., LaBonte, B.J.: 2006, Reconstruction of an inductive velocity field vector from Doppler motions and a pair of solar vector magnetograms. Astrophys. J. 636, 475 – 495. doi:10.1086/497978.

  31. Gibson, S.E., Fan, Y., Mandrini, C., Fisher, G., Démoulin, P.: 2004, Observational consequences of a magnetic flux rope emerging into the corona. Astrophys. J. 617, 600 – 613. doi:10.1086/425294.

  32. Glover, A., Ranns, N.D.R., Harra, L.K., Culhane, J.L.: 2000, The onset and association of CMEs with sigmoidal active regions. Geophys. Res. Lett. 27, 2161 – 2164. doi:10.1029/2000GL000018.

  33. Gopalswamy, N., Kaiser, M.L., Sato, J., Pick, M.: 2000, Shock wave and EUV transient during a flare. In: Ramaty, R., Mandzhavidze, N. (eds.) High Energy Solar Physics Workshop – Anticipating HESSI, ASP Conf. Ser. 206, 351 – 354.

  34. Green, L.M., Kliem, B.: 2009, Flux rope formation preceding coronal mass ejection onset. Astrophys. J. Lett. 700, 83 – 87. doi:10.1088/0004-637X/700/2/L83.

  35. Green, L.M., López Fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43 – 68. doi:10.1023/A:1019658520033.

  36. Green, L.M., Kliem, B., Török, T., van Driel-Gesztelyi, L., Attrill, G.D.R.: 2007, Transient coronal sigmoids and rotating erupting flux ropes. Solar Phys. 246, 365 – 391. doi:10.1007/s11207-007-9061-z.

  37. Hood, A.W., Archontis, V., Galsgaard, K., Moreno-Insertis, F.: 2009, The emergence of toroidal flux tubes from beneath the solar photosphere. Astron. Astrophys. 503, 999 – 1011. doi:10.1051/0004-6361/200912189.

  38. Jeong, H., Chae, J.: 2007, Magnetic helicity injection in active regions. Astrophys. J. 671, 1022 – 1033. doi:10.1086/522666.

  39. Jouve, L., Brun, A.S.: 2009, Three-dimensional nonlinear evolution of a magnetic flux tube in a spherical shell: Influence of turbulent convection and associated mean flows. Astrophys. J. 701, 1300 – 1322. doi:10.1088/0004-637X/701/2/1300.

  40. LaBonte, B.J., Georgoulis, M.K., Rust, D.M.: 2007, Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671, 955 – 963. doi:10.1086/522682.

  41. Leamon, R.J., Canfield, R.C., Pevtsov, A.A.: 2002, Properties of magnetic clouds and geomagnetic storms associated with eruption of coronal sigmoids. J. Geophys. Res. 107(A9), SSH1-1. doi:10.1029/2001JA000313.

  42. Li, H., Schmieder, B., Song, M.T., Bommier, V.: 2007, Interaction of magnetic field systems leading to an X1.7 flare due to large-scale flux tube emergence. Astron. Astrophys. 475, 1081 – 1091. doi:10.1051/0004-6361:20077500.

  43. Liu, J., Zhang, H.: 2006, The magnetic field, horizontal motion and helicity in a fast emerging flux region which eventually forms a delta spot. Solar Phys. 234, 21 – 40. doi:10.1007/s11207-006-2091-0.

  44. Liu, J., Zhang, Y., Zhang, H.: 2008, Relationship between powerful flares and dynamic evolution of the magnetic field at the solar surface. Solar Phys. 248, 67 – 84. doi:10.1007/s11207-008-9149-0.

  45. Longcope, D.W., Welsch, B.T.: 2000, A model for the emergence of a twisted magnetic flux tube. Astrophys. J. 545, 1089 – 1100. doi:10.1086/317846.

  46. López Fuentes, M.C., Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L.: 2000, The counterkink rotation of a non-Hale active region. Astrophys. J. 544, 540 – 549. doi:10.1086/317180.

  47. López Fuentes, M.C., Démoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L.: 2003, Magnetic twist and writhe of active regions. On the origin of deformed flux tubes. Astron. Astrophys. 397, 305 – 318. doi:10.1051/0004-6361:20021487.

  48. Luoni, M.L., Mandrini, C.H., Dasso, S., Démoulin, P., Van Driel-Gesztelyi, L.: 2007, From the photosphere to the interplanetary medium: The magnetic helicity sign from observations. Bol. Asoc. Argent. Astron. 50, 43 – 46.

  49. MacTaggart, D., Hood, A.W.: 2009, On the emergence of toroidal flux tubes: general dynamics and comparisons with the cylinder model. Astron. Astrophys. 507, 995 – 1004. doi:10.1051/0004-6361/200912930.

  50. Magara, T.: 2001, Dynamics of emerging flux tubes in the Sun. Astrophys. J. 549, 608 – 628. doi:10.1086/319073.

  51. Magara, T.: 2004, A model for dynamic evolution of emerging magnetic fields in the Sun. Astrophys. J. 605, 480 – 492. doi:10.1086/382148.

  52. Magara, T., Longcope, D.W.: 2003, Injection of magnetic energy and magnetic helicity into the solar atmosphere by an emerging magnetic flux tube. Astrophys. J. 586, 630 – 649. doi:10.1086/367611.

  53. Manchester, W. IV, Gombosi, T., DeZeeuw, D., Fan, Y.: 2004, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588 – 596. doi:10.1086/421516.

  54. Mandrini, C.H., Démoulin, P., van Driel-Gesztelyi, L., Green, L., López Fuentes, M.C.: 2004, Magnetic helicity budget of solar-active regions from the photosphere to magnetic clouds. Astrophys. Space Sci. 290, 319 – 344. doi:10.1023/B:ASTR.0000032533.31817.0e.

  55. Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725 – 740. doi:10.1051/0004-6361:20041079.

  56. Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833 – 848. doi:10.1086/320559.

  57. Moreno-Insertis, F., Caligari, P., Schuessler, M.: 1994, Active region asymmetry as a result of the rise of magnetic flux tubes. Solar Phys. 153, 449 – 452. doi:10.1007/BF00712518.

  58. Murray, M.J., Hood, A.W.: 2008, Emerging flux tubes from the solar interior into the atmosphere: Effects of non-constant twist. Astron. Astrophys. 479, 567 – 577. doi:10.1051/0004-6361:20078852.

  59. Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V.: 2006, 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909 – 923. doi:10.1051/0004-6361:20065950.

  60. Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033 – 1048. doi:10.1086/377126.

  61. Pariat, E., Démoulin, P., Berger, M.A.: 2005, Photospheric flux density of magnetic helicity. Astron. Astrophys. 439, 1191 – 1203. doi:10.1051/0004-6361:20052663.

  62. Pariat, E., Aulanier, G., Schmieder, B., Georgoulis, M.K., Rust, D.M., Bernasconi, P.N.: 2004, Resistive emergence of undulatory flux tubes. Astrophys. J. 614, 1099 – 1112. doi:10.1086/423891.

  63. Parker, E.N.: 1979, Sunspots and the physics of magnetic flux tubes. IX – Umbral dots and longitudinal overstability. Astrophys. J. 234, 333 – 347. doi:10.1086/157501.

  64. Pevtsov, A.A.: 2002, Sinuous coronal loops at the Sun. In: Martens, P.C.H., Cauffman, D. (eds.) Multi-Wavelength Observations of Coronal Structure and Dynamics, COSPAR Colloq. Ser. 13, 125 – 134.

  65. Pevtsov, A.A., Canfield, R.C., McClymont, A.N.: 1997, On the subphotospheric origin of coronal electric currents. Astrophys. J. 481, 973 – 977. doi:10.1086/304065.

  66. Rust, D.M., Kumar, A.: 1996, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, 199 – 203. doi:10.1086/310118.

  67. Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., et al.: 1995, The solar oscillations investigation – Michelson Doppler Imager. Solar Phys. 162, 129 – 188. doi:10.1007/BF00733429.

  68. Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C.: 1996, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947 – 959.

  69. Tian, L., Alexander, D.: 2006, Role of sunspot and sunspot-group rotation in driving sigmoidal active region eruptions. Solar Phys. 233, 29 – 43. doi:10.1007/s11207-006-2505-z.

  70. Tian, L., Alexander, D.: 2008, On the origin of magnetic helicity in the solar corona. Astrophys. J. 673, 532 – 543. doi:10.1086/524129.

  71. Tian, L., Alexander, D.: 2009, Asymmetry of helicity injection flux in emerging active regions. Astrophys. J. 695, 1012 – 1023. doi:10.1088/0004-637X/695/2/1012.

  72. Tian, L., Alexander, D., Nightingale, R.: 2008, Origins of coronal energy and helicity in NOAA 10030. Astrophys. J. 684, 747 – 756. doi:10.1086/589492.

  73. Tian, L., Liu, Y., Yang, J., Alexander, D.: 2005b, The role of the kink instability of a long-lived active region AR 9604. Solar Phys. 229, 237 – 253. doi:10.1007/s11207-005-6884-3.

  74. Tian, L., Démoulin, P., Alexander, D., Zhu, C.: 2011, On asymmetry of magnetic helicity in emerging active regions: High-resolution observations. Astrophys. J. 727, 28. doi:10.1088/0004-637X/727/1/28.

  75. Titov, V.S., Démoulin, P.: 1999, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707 – 720.

  76. Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., et al.: 1991, The soft X-ray telescope for the SOLAR-A mission. Solar Phys. 136, 37 – 67. doi:10.1007/BF00151694.

  77. van Driel-Gesztelyi, L., Petrovay, K.: 1990, Asymmetric flux loops in active regions. Solar Phys. 126, 285 – 298. doi:10.1007/BF00153051.

  78. Wu, G.P., Huang, G.L., Tang, Y.H., Xu, A.A.: 2005, The observational evidence on the loop interaction in a flare CME event on April 15, 1998. Solar Phys. 227, 327 – 337. doi:10.1007/s11207-005-2512-5.

  79. Yamamoto, T.T., Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2005, Magnetic helicity injection and sigmoidal coronal loops. Astrophys. J. 624, 1072 – 1079. doi:10.1086/429363.

  80. Yang, S., Büchner, J., Zhang, H.: 2009a, Magnetic helicity exchange between neighboring active regions. Astrophys. J. Lett. 695, 25 – 30. doi:10.1088/0004-637X/695/1/L25.

  81. Yang, S., Zhang, H., Büchner, J.: 2009b, Magnetic helicity accumulation and tilt angle evolution of newly emerging active regions. Astron. Astrophys. 502, 333 – 340. doi:10.1051/0004-6361/200810032.

  82. Zwaan, C.: 1985, The emergence of magnetic flux. Solar Phys. 100, 397 – 414. doi:10.1007/BF00158438.

Download references

Author information

Correspondence to M. L. Luoni.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(MPG 1.068 kb).

(MPG 1.786 kb).

(MPG 2.021 kb).

(MPG 1.307 kb).

(MPG 1.386 kb).

(MPG 1.068 kb).

(MPG 1.786 kb).

(MPG 2.021 kb).

(MPG 1.307 kb).

(MPG 1.386 kb).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luoni, M.L., Démoulin, P., Mandrini, C.H. et al. Twisted Flux Tube Emergence Evidenced in Longitudinal Magnetograms: Magnetic Tongues. Sol Phys 270, 45 (2011) doi:10.1007/s11207-011-9731-8

Download citation

Keywords

  • Active regions, magnetic fields
  • Corona, structures
  • Helicity, magnetic
  • Helicity, observations