Advertisement

Measuring Organised Crime Presence at the Municipal Level

Abstract

While indicators assessing the quality of life often comprise measures of crime or fear of crime, these components usually refer to property or violent crimes. More complex crimes, which may significantly impact on the social, economic, and political conditions of local communities, are often overlooked, mostly due to problems in adequately measuring the levels of e.g. organised crime and corruption. Indeed, despite the growing scholarly attention, measurements of organised crime are rare and frequently affected by important methodological limitations. This study addresses this issue by proposing the Mafia Presence Index (MPI), a composite indicator measuring the presence of the mafias in Italy. The MPI aggregates variables measuring different dimensions of mafia presence, namely the presence and activities of mafia groups, mafia violence, and infiltration in politics and the economy. Furthermore, the analysis explores the validity and robustness of the MPI by considering possible alternative variables and by assessing the impact of different calculation strategies. Results show that the MPI is a parsimonious and consistent measure of mafia presence, relying on a core set of five variables directly related to mafia presence. The index is also robust to different calculation methods and is negatively associated with the most popular indexes measuring the quality of life in Italy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Data on reported crimes have been obtained in the framework of an agreement between Università Cattolica del Sacro Cuore-Transcrime and the Italian Ministry of the Interior.

  2. 2.

    All the values obtained from the logarithm transformation are linearly transposed by adding the absolute of the minimum values for each transformed indicator plus a constant equal to 0.001. This procedure avoids the presence of negative and null values without altering the distribution of the transformed indicators allowing the next steps of the methodology.

  3. 3.

    The rotations of the factors also allow the identified latent factors to be potentially correlated. This is positive as Mafia Presence may be correlated with other criminal behaviours.

  4. 4.

    The chosen method was a spline interpolation with barriers (i.e., the smooth surface calculated is constrained by the input barrier features) available in the ArcMap 10.4.1 software. The barriers considered were the Italian national borders. This procedure requires a small adjustment to amend the distortion caused by the edge effect in the municipalities at the borders or along the coastlines.

  5. 5.

    Describing each of these alternatives falls outside the scope of this paper. Full details can be found in OECD (2008).

  6. 6.

    Four potential combinations are excluded, since the Z-score normalization is not compatible with non-additive transformations.

References

  1. Albanese, G., & Marinelli, G. (2013). Organized crime and productivity: Evidence from firm-level data. Rivista Italiana Degli Economisti,18, 367–394.

  2. Allum, F. (2014). Understanding criminal mobility: The case of the Neapolitan Camorra. Journal of Modern Italian Studies,19(5), 583–602. https://doi.org/10.1080/1354571X.2014.962257.

  3. Antonopoulos, G., & Papanicolaou, G. (2018). Organised crime: A very short introduction. New York, NY: Oxford University Press.

  4. Asmundo, A. (2011). Indicatori e costi di criminalità mafiosa. In R. Sciarrone (Ed.), Alleanze nell’ombra. Mafie ed economie locali in Sicilia e nel Mezzogiorno (pp. 49–66). Rome: Donzelli Editore.

  5. Asmundo, A., & Lisciandra, M. (2008). The cost of protection racket in Sicily. Global Crime,9(3), 221–240. https://doi.org/10.1080/17440570802254338.

  6. Atuesta, L. H., & Ponce, A. F. (2017). Meet the Narco: Increased competition among criminal organisations and the explosion of violence in Mexico. Global Crime,18(4), 375–402. https://doi.org/10.1080/17440572.2017.1354520.

  7. Atuesta, L. H., Siordia, O. S., & Madrazo Lajous, A. (2016). La “Guerra Contra las Drogas” en México: registros (ofciales) de eventos durante el periodo de diciembre de 2006 a noviembre de 2011. Aguascalientes: Centro de Investigación y Docencia Económicas. Retrieved from http://www.politicadedrogas.org/PPD/documentos/20170202_095133_14._atuesta_siordia__madrazo__la_guerra_contra_las_drogas_en_mexico_registros_oficiales_de_eventos_durante_el_periodo_de_diciembre_de_2006_a_noviembre_de_2011.pdf.

  8. Bachman, R., & Schutt, R. K. (2010). The practice of research in criminology and criminal justice. Thousands Oaks, CA: SAGE.

  9. Barbagallo, F. (2010). Storia della camorra. Bari: Laterza.

  10. Barone, G., & Narciso, G. (2012). The effect of mafia on public transfers (p. 38). Presented at the Economia informale, evasione fiscale e corruzione, Pavia. Retrieved from http://www.siepweb.it/siep/oldDoc/2012/201207.pdf.

  11. Barone, G., & Narciso, G. (2015). Organized crime and business subsidies: Where does the money go? Journal of Urban Economics,86, 98–110. https://doi.org/10.1016/j.jue.2015.01.002.

  12. Behan, T. (1996). The Camorra. London and New York: Routledge.

  13. Berlusconi, G. (2014). Italian Mafia. In G. Bruinsma & D. Weisburd (Eds.), Encyclopedia of criminology and criminal justice (pp. 2699–2706). New York: Springer.

  14. Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods,16(3), 265–284. https://doi.org/10.1037/a0024448.

  15. Buscaglia, E., & Van Dijk, J. (2003). Controlling organized crime and corruption in the public sector. Forum on Crime and Society,3(1–2), 1–34.

  16. Caglayan, M., Flamini, A., & Jahanshahi, B. (2017). Organized crime and technology (DEM working papers series no. 136). Pavia: University of Pavia, Department of Economics and Management. Retrieved from https://ideas.repec.org/p/pav/demwpp/demwp0136.html.

  17. Calderoni, F. (2011). Where is the mafia in Italy? Measuring the presence of the mafia across Italian provinces. Global Crime,12(1), 41–69. https://doi.org/10.1080/17440572.2011.548962.

  18. Calderoni, F. (2014). Measuring the presence of the Mafias in Italy. In S. Caneppele & F. Calderoni (Eds.), Organized crime, corruption and crime prevention (pp. 239–249). Cham: Springer. https://doi.org/10.1007/978-3-319-01839-3_27.

  19. Calderoni, F., Berlusconi, G., Garofalo, L., Giommoni, L., & Sarno, F. (2015). The Italian mafias in the world: A systematic assessment of the mobility of criminal groups. European Journal of Criminology. https://doi.org/10.1177/1477370815623570.

  20. Calderoni, F., & Di Stefano, F. (2015). The administrative approach in Italy. In A. C. M. Spapens, M. Peters, & D. Van Daele (Eds.), Administrative measures to prevent and tackle crime: Legal possibilities and practical application in EU Member States (pp. 239–264). Den Haag: Eleven International Publishing.

  21. Campana, P. (2011). Eavesdropping on the Mob: The functional diversification of Mafia activities across territories. European Journal of Criminology,8(3), 213–228.

  22. Campana, P., & Varese, F. (2018). Organized crime in the United Kingdom: Illegal governance of markets and communities. The British Journal of Criminology. https://doi.org/10.1093/bjc/azx078.

  23. Caneppele, S., Riccardi, M., & Standridge, P. (2013). Green energy and black economy: Mafia investments in the wind power sector in Italy. Crime, Law and Social Change,59(3), 319–339. https://doi.org/10.1007/s10611-013-9418-1.

  24. Capuano, C., & Purificato, F. (2012, July). The Macroeconomic Impact of Organized Crime, a Neo-Kaleckian Perspective. Retrieved from https://mpra.ub.uni-muenchen.de/40077/1/MPRA_paper_40077.pdf.

  25. Censis. (2009). Il condizionamento delle mafie sull’economia, sulla società e sulle istituzioni del Mezzogiorno. Roma: Censis. Retrieved from http://www.censis.it/censis/attachment/protected_download/624?view_id=35.

  26. Centorrino, M., & Ofria, F. (2008). Criminalità organizzata e produttività del lavoro nel Mezzogiorno: un’applicazione del modello “Kaldor-Verdoorn”. Rivista Economica Del Mezzogiorno. https://doi.org/10.1432/27151.

  27. Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A., et al. (2008). Creating composite indicators with DEA and robustness analysis: The case of the Technology Achievement Index. Journal of the Operational Research Society,59(2), 239–251. https://doi.org/10.1057/palgrave.jors.2602445.

  28. Ciconte, E. (1992). ‘Ndrangheta dall’Unità a oggi. Roma Bari: Laterza.

  29. Commissione parlamentare antimafia. (1994). Relazione sulle risultanze dell’attività del gruppo di lavoro incaricato di svolgere accertamenti su insediamenti e infiltrazioni di soggetti ed organizzazioni di tipo mafioso in aree non tradizionali. Roma: Commissione Parlamentare d’inchiesta sul fenomeno della mafia e sulle altre associazioni criminali similari.

  30. Coniglio, N., Celi, G., & Scagliusi, C. (2010). Organized crime, migration and human capital formation: Evidence from the South of Italy (working paper No. 28). Dipartimento di Economia e Finanza—Università degli Studi di Bari “Aldo Moro.” Retrieved from https://econpapers.repec.org/paper/baiseries/economia-series28.htm.

  31. Corbetta, P. (2002). Metodi di analisi multivariata per le scienze sociali: i modelli di equazioni strutturali. Bologna: Il mulino.

  32. Coscia, M., & Rios, V. (2012). Knowing where and how criminal organizations operate using web content. In Proceedings of the 21st ACM international conference on information and knowledge management (pp. 1412–1421). New York, NY, USA: ACM. https://doi.org/10.1145/2396761.2398446.

  33. Crime&tech. (2018). Mafie nel Lazio: Le infiltrazioni della criminalità organizzata nell’economia legale del Lazio. Roma: Regione Lazio.

  34. CROSS. (2014). Primo rapporto trimestrale sulle aree settentrionali, per la presidenza della commissione parlamentare di inchiesta sul fenomeno mafioso. Milano: Osservatorio sulla Criminalità Organizzata dell’Università degli Studi di Milano.

  35. Cudeck, R. (2000). Exploratory factor analysis. In Handbook of applied multivariate statistics and mathematical modeling (pp. 265–296). Elsevier. https://doi.org/10.1016/B978-012691360-6/50011-2.

  36. Daniele, G., & Dipoppa, G. (2017). Mafia, elections and violence against politicians. Journal of Public Economics,154, 10–33. https://doi.org/10.1016/j.jpubeco.2017.08.004.

  37. Daniele, V., & Marani, U. (2011). Organized crime, the quality of local institutions and FDI in Italy: A panel data analysis. European Journal of Political Economy,27(1), 132–142. https://doi.org/10.1016/j.ejpoleco.2010.04.003.

  38. De Feo, G., & De Luca, G. (2013). Mafia in the ballot box (SIRE Discussion Paper No. 2013–104). Scottish Institute for Research in Economics (SIRE). Retrieved from https://econpapers.repec.org/paper/ednsirdps/529.htm.

  39. Decker, S. H., & Curry, G. D. (2002). Gangs, gang homicides, and gang loyalty: Organized crimes or disorganized criminals. Journal of Criminal Justice,30(4), 343–352.

  40. Di Gennaro, G., & La Spina, A. (2016). The costs of illegality: A research programme. Global Crime,17(1), 1–20. https://doi.org/10.1080/17440572.2015.1128621.

  41. Dugato, M., De Simoni, M., & Savona, E. U. (2014). Measuring OC in Latin America. Mexico City, Mexico: UNODC-INEGI.

  42. Dugato, M., Favarin, S., & Giommoni, L. (2015). The risks and rewards of organized crime investments in real estate. British Journal of Criminology,55(5), 944–965. https://doi.org/10.1093/bjc/azv002.

  43. Eurispes. (2004). 16° Rapporto Italia 2004. Roma: Eurilink.

  44. Eurispes. (2007). 19° Rapporto Italia 2007. Roma: Eurilink.

  45. Eurispes. (2008). 20° Rapporto Italia 2008. Roma: Eurilink.

  46. Europol. (2017). European Union serious and organised crime threat assessment: Crime in the age of technology. Den Haag: Europol. Retrieved from https://www.europol.europa.eu/activities-services/main-reports/european-union-serious-and-organised-crime-threat-assessment-2017.

  47. Ferwerda, J., & Unger, B. (2016). Organised crime infiltration in the Netherlands: Transportation companies hiding transit crimes. In E. U. Savona, M. Riccardi, & G. Berlusconi (Eds.), Organised crime in European businesses (pp. 35–50). London, New York: Routledge.

  48. Ganau, R., & Rodríguez-Pose, A. (2017). Industrial clusters, organized crime, and productivity growth in Italian SMEs. Journal of Regional Science,58(2), 363–385. https://doi.org/10.1111/jors.12354.

  49. Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis,24(3), 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x.

  50. Giambona, F., & Vassallo, E. (2014). Composite indicator of social inclusion for European countries. Social Indicators Research,116(1), 269–293. https://doi.org/10.1007/s11205-013-0274-2.

  51. Gilmour, S. (2008). Understanding organized crime: A local perspective. Policing: A Journal of Policy and Practice,2(1), 18–27. https://doi.org/10.1093/police/pan002.

  52. Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social Indicators Research. https://doi.org/10.1007/s11205-017-1832-9.

  53. Guerrero-Gutiérrez, E. (2011). Security, drugs, and violence in Mexico: A survey. In 7th North American Forum, Washington (p. 146).

  54. HMIC. (2015). Regional organised crime units: A review of capability and effectiveness. London: Her Majesty Inspectorate of Constabulary. Retrieved from https://www.justiceinspectorates.gov.uk/hmicfrs/wp-content/uploads/regional-organised-crime-units.pdf.

  55. HMIC. (2017). PEEL: Police Effectiveness 2016. A National Overview. London: Her Majesty Inspectorate of Constabulary. Retrieved from https://www.justiceinspectorates.gov.uk/hmicfrs/wp-content/uploads/peel-police-effectiveness-2016.pdf.

  56. Il Sole 24 ORE. (2017, November 30). Qualità della vita 2017: tutte le classifiche del Sole 24 Ore. Il Sole 24 ORE. Retrieved from http://www.ilsole24ore.com/dossier/notizie/2017/qualita-della-vita/.

  57. ISTAT. (2010, September). B. Indicatori di contesto chiave e variabili di rottura. Retrieved October 16, 2010, from http://www.istat.it/ambiente/contesto/infoterr/azioneB.html#tema.

  58. ISTAT. (2017). BES 2017 - Il benessere equo e sostenibile in Italia. Rome, Italy: Istituto nazionale di statistica. Retrieved from https://www.istat.it/it/files//2017/12/Bes_2017.pdf.

  59. ItaliaOggi. (2017, November 27). Qualità della vita 2017. ItaliaOggi, p. 40.

  60. Land, K. C., Michalos, A. C., & Sirgy, J. (Eds.). (2012). Handbook of social indicators and quality of life research. Amsterdam: Springer.

  61. Lavezzi, A. M. (2008). Economic structure and vulnerability to organised crime: Evidence from Sicily. Global Crime,9(3), 198–220.

  62. Lavezzi, A. M. (2014). Organised crime and the economy: A framework for policy prescriptions. Global Crime. https://doi.org/10.1080/17440572.2013.868626.

  63. Lupo, S. (1993). Storia della mafia. Dalle origini ai nostri giorni. Roma: Donzelli.

  64. Massari, M. (1998). La Sacra Corona Unita: Potere E Segreto. Roma: Laterza.

  65. Mazziotta, M., & Pareto, A. (2013). Methods for constructing composite indices: One for all or all for one. Rivista Italiana Di Economia Demografia e Statistica,67(2), 67–80.

  66. Mennella, A. (2009). Reti sociali, criminalità organizzata e mercati locali del lavoro. University of Sassari. Retrieved from http://www.aiel.it/Old/bacheca/SASSARI/papers/mennella.pdf.

  67. Meško, G., Sotlar, A., Dobovšek, B., Eman, K., Modic, M., Ažman, B., et al. (2015). Slovenia. In E. U. Savona & G. Berlusconi (Eds.), Organized Crime Infltration of Legitimate Businesses in Europe: A Pilot Project in Five European Countries. Final Report of Project ARIELAssessing the Risk of the Infltration of Organized Crime in EU MSs Legitimate Economies: a Pilot Project in 5 EU Countries (pp. 50–56). Trento: Transcrime—Università degli Studi di Trento.

  68. Mete, V. (2009). Fuori dal comune: lo scioglimento delle amministrazioni locali per infiltrazioni mafiose. Acireale and Roma: Bonanno.

  69. Michalos, A. C. (Ed.). (2014). Encyclopedia of quality of life and well-being research. Amsterdam: Springer.

  70. Michalos, A. C., & Zumbo, B. D. (2000). Criminal victimization and the quality of life. Social Indicators Research,50(3), 245–295. https://doi.org/10.1007/978-94-017-0389-5_15.

  71. Ministerio del Interior, & CITCO. (2017). Lucha contra el crimen organizado la corrupción. Balance 2016. Madrid: Ministerio del Interior. Retrieved from http://www.interior.gob.es/documents/10180/5791067/Balance+2016+de+lucha+contra+el+Crimen+Organizado+y+la+Corrupci%C3%B3n.pdf/25acb5f9-b4b4-4b21-9d22-aef29fc88a57.

  72. Mizobuchi, H. (2014). Measuring world better life frontier: A composite indicator for OECD better life index. Social Indicators Research,118(3), 987–1007. https://doi.org/10.1007/s11205-013-0457-x.

  73. Moro, F. N., Petrella, A., & Sberna, S. (2016). The politics of Mafia violence: Explaining variation in Mafia killings in Southern Italy (1983–2008). Terrorism and Political Violence,28(1), 90–113. https://doi.org/10.1080/09546553.2014.880835.

  74. Moro, F. N., & Sberna, S. (2017). Transferring violence? Mafia killings in nontraditional areas: Evidence from Italy. Journal of Conflict Resolution. https://doi.org/10.1177/0022002717693049.

  75. Nardo, M., Saisana, M., Tarantola, S., Hoffman, A., & Giovannini, E. (2008). Handbook on constructing composite indicators: Methodology and user guide. Paris: OECD.

  76. NCA. (2017). National Strategic Assessment of Serious and Organised Crime 2017. London: National Crime Agency.

  77. Neapolitan, J. L. (1996). Cross-national crime data: Some unaddressed problems. Journal of Crime and Justice,19(1), 95–112. https://doi.org/10.1080/0735648X.1996.9721531.

  78. OCPB. (2010). Organised crime group mapping manual. London: National Coordinators Office, NCO.

  79. Olivieri, E., & Sberna, S. (2014). “Set the Night on Fire!” Mafia Violence and Elections in Italy. Presented at the APSA 2014 annual meeting paper.

  80. Palomo, J., Márquez, J., & Laguna, P. (2015). Spain. In E. U. Savona & M. Riccardi (Eds.), From Illegal Markets to Legitimate Businesses: The Portfolio of Organised Crime in Europe (pp. 126–133). Trento: Università degli Studi di Trento. Retrieved from http://www.transcrime.it/pubblicazioni/the-portfolio-of-organised-crime-in-europe/.

  81. Palomo, J., Márquez, J., & Laguna, K. (2016). From drug trafficking to wholesale trade business: Organised crime infiltration in Spain. In E. U. Savona, M. Riccardi, & G. Berlusconi (Eds.), Organised crime in European businesses (pp. 64–84). London, New York: Routledge.

  82. Paoli, L. (2003). Mafia brotherhoods: Organized crime, Italian style. Oxford, New York: Oxford University Press.

  83. Paoli, L. (2014). The Italian Mafia. In L. Paoli (Ed.), The Oxford handbook of organized crime (pp. 121–141). Oxford: Oxford University Press.

  84. Pinotti, P. (2015). The economic costs of organised crime: Evidence from Southern Italy. The Economic Journal,125(586), F203–F232. https://doi.org/10.1111/ecoj.12235.

  85. Reynolds, L., & McKee, M. (2010). Organised crime and the efforts to combat it: A concern for public health. Globalization and Health,6, 21. https://doi.org/10.1186/1744-8603-6-21.

  86. Riccardi, M., Dugato, M., & Polizzotti, M. (2014). The theft of medicines from Italian Hospitals. Trento: Università degli Studi di Trento.

  87. Rios, V. (2013). Why did Mexico become so violent? A self-reinforcing violent equilibrium caused by competition and enforcement. Trends in Organized Crime,16(2), 138–155. https://doi.org/10.1007/s12117-012-9175-z.

  88. Roberts, J. V. (1992). Public opinion, crime, and criminal justice. Crime and Justice,1, 99–180.

  89. Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A (Statistics in Society),168(2), 307–323.

  90. Saltelli, A. (2007). Composite indicators between analysis and advocacy. Social Indicators Research,81(1), 65–77. https://doi.org/10.1007/s11205-006-0024-9.

  91. Sampford, C., Shacklock, A., Connors, C., & Galtung, F. (Eds.). (2006). Measuring corruption. Aldershot: Ashgate.

  92. Savona, E. U. (2012, May). Assessing organized crime in Latin America and the Caribbean. Presented at the 1° International Conference on Statistics of Government, Crime, Victimization and Justice, Aguascalientes.

  93. Savona, E. U., Dugato, M., & Garofalo, L. (2012). A framework for the quantification of organized crime and assessment of availability and quality of relevant data in three selected countries of Latin America and the Caribbean. Mexico City, Mexico: UNODC-INEGI. Retrieved from http://www.transcrime.it/pubblicazioni/a-framework-for-the-quantification-of-organized-crime-and-assessment-of-availability-and-quality-of-relevant-data-in-three-selected-countries-of-latin-america-and-the-caribbean/.

  94. Savona, E. U., Riccardi, M., & Berlusconi, G. (2016). Organised crime in European businesses. New York: Routledge.

  95. Schulz, J. (2017). The Churches’ Bans on Consanguineous Marriages, Kin-Networks and Democracy (SSRN Scholarly Paper No. ID 2877828). Rochester, NY: Social Science Research Network. Retrieved from https://papers.ssrn.com/abstract=2877828.

  96. Sciarrone, R. (1998). Mafie vecchie, mafie nuove: radicamento ed espansione. Roma: Donzelli.

  97. Sciarrone, R. (2009). Mafie vecchie, mafie nuove. Radicamento ed espansione (Nuova edizione riveduta e ampliata). Roma: Donzelli.

  98. Sciarrone, R. (Ed.). (2014). Mafie del Nord. Strategie criminali e contesti locali. Roma: Donzelli.

  99. Sciarrone, R., & Dagnes, J. (2014). Geografia degli insediamenti mafiosi. Fattori di contesto, strategie criminali e azione antimafia. In R. Sciarrone (Ed.), Mafie del Nord. Strategie criminali e contesti locali (pp. 39–86). Roma: Donzelli.

  100. Sciarrone, R., & Storti, L. (2014). The territorial expansion of mafia-type organized crime. The case of the Italian mafia in Germany. Crime, Law and Social Change,61(1), 37–60. https://doi.org/10.1007/s10611-013-9473-7.

  101. Sergi, A. (2015). The evolution of the Australian ‘ndrangheta. An historical perspective. Australian & New Zealand Journal of Criminology,48(2), 155–174. https://doi.org/10.1177/0004865814554305.

  102. Slak, B., Modic, M., Eman, K., & Ažman, B. (2016). The sex market, bars and nightclubs: Criminal infiltration in Slovenia. In E. U. Savona, M. Riccardi, & G. Berlusconi (Eds.), Organised crime in European businesses (pp. 51–63). London, New York: Routledge.

  103. Smith, D. C. (1975). The Mafia mystique. New York: Basic Books.

  104. Solivetti, L. M. (2016). Crime patterns between tradition and change: A territorial analysis of the Italian Provinces. Social Indicators Research,128(2), 531–558. https://doi.org/10.1007/s11205-015-1043-1.

  105. Transcrime. (2013). Project NOP Security 2007-2013: Mafias Investments. Report Line 1. Rome: Italian Ministry of Interior. Retrieved from http://www.investimentioc.it/index.htm.

  106. Van Dijk, J. (2007). Mafia markers: Assessing organized crime and its impact upon societies. Trends in Organized Crime,10(4), 39–56. https://doi.org/10.1007/s12117-007-9013-x.

  107. Varese, F. (2006). How Mafias migrate: The case of the ‘Ndrangheta in Northern Italy. Law & Society Review,40(2), 411–444.

  108. Varese, F. (2013). Mafias on the move: How organized crime conquers new territories. Princeton Oxford: Princeton University Press.

  109. Von Lampe, K. (2016). Organized crime: Analyzing illegal activities, criminal structures, and extra-legal governance. Los Angeles: SAGE.

  110. Weisburd, D. (2015). The law of crime concentration and the criminology of place. Criminology,53(2), 133–157. https://doi.org/10.1111/1745-9125.12070.

  111. Wittebrood, K., & Junger, M. (2002). Trends in violent crime: A comparison between police statistics and victimization surveys. Social Indicators Research,59(2), 153–173.

  112. Woodiwiss, M. (2001). Organized crime and American power: A history. Toronto: University of Toronto Press.

Download references

Author information

Correspondence to Marco Dugato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The article is the result of the joint contributions by all authors. The design and methodology of the study were developed by all authors. Francesco Calderoni and Gian Maria Campedelli wrote the introduction and background, Gian Maria Campedelli and Marco Dugato prepared the data, Marco Dugato conducted the analysis. All authors contributed to the discussion of the results and to the revision of the manuscript. All authors have approved the final revised version of the article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dugato, M., Calderoni, F. & Campedelli, G.M. Measuring Organised Crime Presence at the Municipal Level. Soc Indic Res 147, 237–261 (2020). https://doi.org/10.1007/s11205-019-02151-7

Download citation

Keywords

  • Mafia
  • Organised crime
  • Composite indicators
  • Quality of life
  • Crime