Social Indicators Research

, Volume 141, Issue 2, pp 581–609 | Cite as

Comparing the Performance of National Educational Systems: Inequality Versus Achievement?

  • Víctor Giménez
  • Claudio Thieme
  • Diego Prior
  • Emili Tortosa-AusinaEmail author


We measure performance change for the educational systems of 28 countries which participated in the Trends in International Mathematics and Science Study in years 2007 and 2011 for eighth grade basic education students. We consider simultaneously variables related to academic achievement and inequality in the discipline of mathematics. From a methodological point of view, we use the global Malmquist–Luenberger productivity index due to the presence of bad outputs. To the best of our knowledge, this methodology had not been applied previously in the field of education despite these desirable which are particularly useful in this field. Results indicate that the countries participating in the study not only chose different paths to improve their educational performance but, in addition, results varied remarkably among them. They also suggest that, on average, educational performance deteriorated between 2007 and 2011, although we also found (successful) efforts in several countries to improve equality.


Educational system Efficiency Inequality Malmquist–Luenberger 

JEL Classification

C61 H52 I21 


  1. Agasisti, T. (2014). The efficiency of public spending on education: An empirical comparison of EU countries. European Journal of Education, 49(4), 543–557.CrossRefGoogle Scholar
  2. Balk, B. M. (2001). Scale efficiency and productivity change. Journal of Productivity Analysis, 15(3), 159–183.CrossRefGoogle Scholar
  3. Barro, R. J. (1997). Determinants of economic growth: A cross-country empirical study. Cambridge, MA: MIT Press.Google Scholar
  4. Carlson, D. (2001). Focusing state educational accountability systems: Four methods for judging school quality and progress. Center for Assessment (NCIEA), Dover, NH: Technical report.Google Scholar
  5. Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica, 50(6), 1393–1414.CrossRefGoogle Scholar
  6. Chang, C.-H., & Pascua, L. (2017). The curriculum of climate change education: A case for Singapore. The Journal of Environmental Education (forthcoming).Google Scholar
  7. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.CrossRefGoogle Scholar
  8. Chen, C.-M., & van Dalen, J. (2010). Measuring dynamic efficiency: Theories and an integrated methodology. European Journal of Operational Research, 203(3), 749–760.CrossRefGoogle Scholar
  9. Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51, 229–240.CrossRefGoogle Scholar
  10. Dakpo, K. H., Jeanneaux, P., & Latruffe, L. (2016). Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric framework. European Journal of Operational Research, 250(2), 347–359.CrossRefGoogle Scholar
  11. De Witte, K., & López-Torres, L. (2017). Efficiency in education: A review of literature and a way forward. Journal of the Operational Research Society (forthcoming).Google Scholar
  12. Deng, Z., & Gopinathan, S. (2016). PISA and high-performing education systems: Explaining Singapore’s education success. Comparative Education, 52(4), 449–472.CrossRefGoogle Scholar
  13. Dufrechou, P. A. (2016). The efficiency of public education spending in Latin America: A comparison to high-income countries. International Journal of Educational Development, 49, 188–203.CrossRefGoogle Scholar
  14. Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-Economic Planning Sciences, 42(3), 151–157.CrossRefGoogle Scholar
  15. Emrouznejad, A., Parker, B. R., & Tavares, G. (2010). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-economic Planning Sciences, 42(3), 151–157.CrossRefGoogle Scholar
  16. Emrouznejad, A., & Yang, G. (2017). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Economic Planning Sciences, 61(2018), 4–8.Google Scholar
  17. Epure, M., & Lafuente, E. (2015). Monitoring bank performance in the presence of risk. Journal of Productivity Analysis, 44(3), 265–281.CrossRefGoogle Scholar
  18. Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: Comment. European Journal of Operational Research, 157(1), 242–245.CrossRefGoogle Scholar
  19. Färe, R., & Grosskopf, S. (2009). A comment on weak disposability in nonparametric production analysis. American Journal of Agricultural Economics, 91(2), 535–538.CrossRefGoogle Scholar
  20. Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. The Review of Economics and Statistics, 71(1), 90–98.CrossRefGoogle Scholar
  21. Färe, R., Grosskopf, S., Noh, D.-W., & Weber, W. W. (2005). Characteristics of a polluting technology: Theory and practice. Journal of Econometrics, 126(2), 469–492.CrossRefGoogle Scholar
  22. Färe, R., Grosskopf, S., & Pasurka, C. A, Jr. (2007). Environmental production functions and environmental directional distance functions. Energy, 32(7), 1055–1066.CrossRefGoogle Scholar
  23. Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84(1), 66–83.Google Scholar
  24. García, M. J., & Arechavaleta, C. (2011). Cuáles son las razones subyacentes al éxito educativo de Corea del Sur? Revista Española de Educación Comparada, 18, 203–224.CrossRefGoogle Scholar
  25. Giménez, V., Thieme, C., Prior, D., & Tortosa-Ausina, E. (2017). An international comparison of educational systems: A temporal analysis in presence of bad outputs. Journal of Productivity Analysis, 47(1), 83–101.CrossRefGoogle Scholar
  26. Golany, B., & Roll, Y. (1989). An application procedure for DEA. Omega, 17(3), 237–250.CrossRefGoogle Scholar
  27. Grosskopf, S., Hayes, K. J., & Taylor, L. L. (2014). Efficiency in education: Research and implications. Applied Economic Perspectives and Policy, 36(2), 175–210.CrossRefGoogle Scholar
  28. Hailu, A., & Veeman, T. S. (2001). Non-parametric productivity analysis with undesirable outputs: An application to the Canadian pulp and paper industry. American Journal of Agricultural Economics, 83(3), 605–616.CrossRefGoogle Scholar
  29. Hairon, S., & Tan, C. (2017). Professional learning communities in Singapore and Shanghai: implications for teacher collaboration. Compare: A Journal of Comparative and International Education (forthcoming).Google Scholar
  30. Hanushek, E. A., & Kimko, D. D. (2000). Schooling, labour force quality, and the growth of the nations. American Economic Review, 90, 1184–1208.CrossRefGoogle Scholar
  31. Hanushek, E. A., & Luque, J. A. (2003). Efficiency and equity in schools around the world. Economics of Education Review, 22(5), 481–502.CrossRefGoogle Scholar
  32. Heng, M. A., & Atencio, M. (2017). “I assume they don’t think!”: Teachers’ perceptions of Normal Technical students in Singapore. The Curriculum Journal, 28(2), 212–230.CrossRefGoogle Scholar
  33. Johnes, J. (2015). Operational research in education. European Journal of Operational Research, 243(3), 683–696.CrossRefGoogle Scholar
  34. Kao, C. (2013). Dynamic data envelopment analysis: A relational analysis. European Journal of Operational Research, 227(2), 325–330.CrossRefGoogle Scholar
  35. Krueger, A., & Lindahl, M. (2001). Education for growth: Why and for whom? Journal of Economic Literature, 39, 1101–1136.CrossRefGoogle Scholar
  36. Kumar, S., & Russell, R. R. (2002). Technological change, technological catch-up, and capital deepening: Relative contributions to growth and convergence. American Economic Review, 92(3), 527–548.CrossRefGoogle Scholar
  37. Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American Journal of Agricultural Economics, 87, 1077–1082.CrossRefGoogle Scholar
  38. Kuosmanen, T., & Podinovski, V. V. (2009). Weak disposability in nonparametric production analysis: Reply to Färe and Grosskopf. American Journal of Agricultural Economics, 91, 539–545.CrossRefGoogle Scholar
  39. Loader, C. R. (1996). Local likelihood density estimation. The Annals of Statistics, 24(4), 1602–1618.CrossRefGoogle Scholar
  40. Luenberger, D. (1992). New optimality principles for economic efficiency and equilibrium. Journal of Optimization Theory and Applications, 75(2), 221–264.CrossRefGoogle Scholar
  41. Mandal, S. K., & Madheswaran, S. (2010). Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy, 38(2), 1108–1118.CrossRefGoogle Scholar
  42. Nemoto, J., & Goto, M. (1999). Dynamic data envelopment analysis: Modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Economics Letters, 64(1), 51–56.CrossRefGoogle Scholar
  43. Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, 19(2–3), 191–210.CrossRefGoogle Scholar
  44. Oh, D. (2010). A global Malmquist–Luenberger productivity index. Journal of Productivity Analysis, 34(3), 183–197.CrossRefGoogle Scholar
  45. Pastor, J. T., & Lovell, C. A. K. (2005). A global Malmquist productivity index. Economics Letters, 88(2), 266–271.CrossRefGoogle Scholar
  46. Patron, R., & Vaillant, M. (2012). Can education policy address the wage gap? A note on public skill formation in developing countries. Journal of International Development, 24, 369–378.CrossRefGoogle Scholar
  47. Picazo-Tadeo, A. J., Beltrán-Esteve, M., & Gómez-Limón, J. A. (2012). Assessing eco-efficiency with directional distance functions. European Journal of Operational Research, 220(3), 798–809.CrossRefGoogle Scholar
  48. Picazo-Tadeo, A. J., Castillo-Giménez, J., & Beltrán-Esteve, M. (2014). An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union. Ecological Economics, 100, 173–182.CrossRefGoogle Scholar
  49. Picazo-Tadeo, A. J., & Prior, D. (2009). Environmental externalities and efficiency measurement. Journal of Environmental Management, 90(11), 3332–3339.CrossRefGoogle Scholar
  50. Reinhard, S., Lovell, C. A. K., & Thijssen, G. J. (2002). Analysis of environmental efficiency variation. American Journal of Agricultural Economics, 84, 1054–1065.CrossRefGoogle Scholar
  51. Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142(1), 16–20.CrossRefGoogle Scholar
  52. Sheather, S. J., & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53(3), 683–690.Google Scholar
  53. So, K., & Kang, J. (2014). Curriculum reform in Korea: Issues and challenges for twenty-first century learning. Asia-Pacific Education Researcher, 23(4), 795–803.CrossRefGoogle Scholar
  54. Sueyoshi, T., & Goto, M. (2011). Measurement of returns to scale and damages to scale for dea-based operational and environmental assessment: How to manage desirable (good) and undesirable (bad) outputs? European Journal of Operational Research, 211(1), 76–89.CrossRefGoogle Scholar
  55. Teddlie, C., & Reynolds, D. (2000). The international handbook of school effectiveness research. London: Routledge.Google Scholar
  56. Tsai, S., Smith, L., & Hauser, R. (2017). Families, schools, and student achievement inequality. Sociology of Education, 90(1), 64–88.CrossRefGoogle Scholar
  57. Watanabe, M., & Tanaka, K. (2007). Efficiency analysis of Chinese industry: A directional distance function approach. Energy Policy, 35(12), 6323–6331.CrossRefGoogle Scholar
  58. Xue, M., & Harker, P. T. (2002). Note: Ranking DMUs with infeasible super-efficiency DEA models. Management Science, 48(5), 705–710.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BusinessUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Facultad de Economía y EmpresaUniversidad Diego PortalesSantiago de ChileChile
  3. 3.Departament d’EconomiaUniversitat Jaume ICastelló de la PlanaSpain

Personalised recommendations