Advertisement

Social Indicators Research

, Volume 140, Issue 3, pp 929–952 | Cite as

Developing an Index to Measure Sub-municipal Level Urban Sprawl

  • David Gálvez Ruiz
  • Pilar Diaz Cuevas
  • Olta Braçe
  • Marco Garrido-Cumbrera
Article
  • 163 Downloads

Abstract

The present study aims to develop an index composed of different spatial variables to measure the urban sprawl levels of a municipality located in Southern Spain. According to the findings, urban sprawl can be measured not only on the metropolitan level but also on a more detailed and precise level, such as sub-municipal. A group of experts chosen for their suitability in measuring urban sprawl select six spatial variables (population density, net residential density, coverage ratio, land use types, percentage of residential land use, and average year of construction). These variables are aggregated using Choquet integral, a technique that combines interactions between those variables providing greater coherence to the complexity that is inherent in the creation of composite sprawl indexes. This methodology has been demonstrated to be valid and appropriate in evaluating urban expansion at sub-municipal level, but can also be applied to other scales once it is clearly a phenomenon in which interaction between criteria exists. The resulting composite index allows the assignment of different levels of sprawl to the urban areas consistent with their morphology and landscape.

Keywords

Urban sprawl Composite index Choquet integral Sub-municipal level 

JEL Classification

C43 

Notes

Acknowledgements

The results of this article are part of the R&D Project entitled “Evaluation of the Impact of Urban Sprawl on the Lifestyles, Commuting and Health of the Adult Population in Spanish Metropolitan Areas (URDIS)” (CSO2014-59524-P) (Ministry of the Economy and Competitiveness (Spain)/ERDF/EU), involving the Universities of Seville and the Basque Country.

References

  1. Berrigan, D., Tatalovich, Z., Pickle, L. W., Ewing, R., & Ballard-Barbash, R. (2014). Urban Sprawl, obesity and cancer mortality in the Unated States: cross sectional analysis and methodological challenges. International Journal of Health Geographics, 13(3), 1–14.  https://doi.org/10.1186/1476-072X-13-3.CrossRefGoogle Scholar
  2. Berrigan, D., & Troiano, R. P. (2002). The association between urban form and physical activity in US adults. American Journal of Preventive Medicine, 23, 74–79.  https://doi.org/10.1016/S0749-3797(02)00476-2.CrossRefGoogle Scholar
  3. Bertin, G., Carrino, L., & Giove, S. (2016). The Italian regional well-being in a multi-expert non-additive perspective. Social Indicators Research.  https://doi.org/10.1007/s11205-016-1475-2.CrossRefGoogle Scholar
  4. Bhatta, B. (2010). Analysis of urban growth and sprawl from remote sensing data. Berlin: Springer.CrossRefGoogle Scholar
  5. Braza, M., Shoemaker, W., & Seeley, A. (2004). Neighborhood design and rates of walking and biking to elementary school in 34 California communities. American Journal of Health Promotion, 19, 128–136.  https://doi.org/10.4278/0890-1171-19.2.128.CrossRefGoogle Scholar
  6. Bruegmann, R. (2005). Sprawl: A compact history. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  7. Burchfield, M., Overman, H. G., Puga, D., & Turner, M. A. (2006). Causes of sprawl: a portrait from space. The Quarterly Journal of Economics, 121, 587–633.  https://doi.org/10.1162/qjec.2006.121.2.587.CrossRefGoogle Scholar
  8. Burton, E. (2000). The Compact city: Just or just compact? A preliminary analysis. Urban Studies, 37, 1969–2001.  https://doi.org/10.1080/00420980050162184.CrossRefGoogle Scholar
  9. Catalán, B., Saurí, D., & Serra, P. (2008). Urban sprawl in the Mediterranean?: Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landscape and Urban Planning, 85(3–4), 174–184.  https://doi.org/10.1016/j.landurbplan.2007.11.004.CrossRefGoogle Scholar
  10. Center for International Earth Science Information Network (CIESIN). (2005). Environmental sustainability index. Retrieved from http://sedac.ciesin.columbia.edu/data/collection/esi/.
  11. Cho, J. (2005). Urban planning and urban sprawl in Korea. Urban Policy and Research, 23, 203–218.  https://doi.org/10.1080/08111470500143304.CrossRefGoogle Scholar
  12. Cocero Matesanz, D., Santos Preciado, J. M., Muguruza Cañas, M. del C., Santa Cecilia Mateos, F., Azcárate Luxán, M. V., Borderías Uribeondo, M. del P., & Prieto Flores, M. E. (2014). La utilización en los estudios urbanos de la cartografía catastral y su manejo mediante un SIG: aplicación al municipio de Getafe (Madrid) [The use in urban studies of cadastral mapping and management through GIS: application to the town of Getafe (Madrid)]. Espacio, Tiempo y Forma, VI(6-7), 47–72. http://doi.org/10.5944/etfvi.6-7.0.14848.CrossRefGoogle Scholar
  13. Duany, A., Plater-Zyberk, E., & Speck, J. (2000). Suburban nation: the rise of sprawl and the decline of the American dream. New York: North Point Press.Google Scholar
  14. Epstein, L., Raja, S., & Gold, S. (2006). Reducing sedentary behavior: The relationship between park area and the physical activity of youth. Psychological Science, 17, 654–659.  https://doi.org/10.1111/j.1467-9280.2006.01761.x.CrossRefGoogle Scholar
  15. European Environment Agency. (2006). Urban sprawl in Europe - The ignored challenge. (D. Ludlow, Ed.). Copenhagen. European Environment.  https://doi.org/10.1080/02697451003740312.CrossRefGoogle Scholar
  16. Eurostat. (2012). Europe in figures — Eurostat yearbook. Retrieved from http://ec.europa.eu/eurostat/statistics-explained/index.php/Europe_in_figures_-_Eurostat_yearbook.
  17. Ewing, R., & Hamidi, S. (2014). Measuring urban sprawl and validating sprawl measures. Retrieved from http://www.smartgrowthamerica.org/documents/measuring-sprawl-2014.pdf.
  18. Ewing, R., Meakins, G., Hamidi, S., & Nelson, A. C. (2014). Relationship between urban sprawl and physical activity, obesity, and morbidity - Update and refinement. Health and Place, 26, 118–126.  https://doi.org/10.1016/j.healthplace.2013.12.008.CrossRefGoogle Scholar
  19. Ewing, R., Pendall, R., & Chen, D. (2002). Measuring Sprawl and its impacts. Retrieved from http://www.smartgrowthamerica.org/documents/MeasuringSprawl.PDF.
  20. Ewing, R., Pendall, R., & Chen, D. (2003a). Measuring Sprawl and Its Transportation Impacts. Transportation Research Record, 1832, 175–183.  https://doi.org/10.3141/1831-20.CrossRefGoogle Scholar
  21. Ewing, R., Schmid, T. L., Killingsworth, R., Zlot, A., & Raudenbush, S. (2003b). Relationship between urban sprawl and physical activity. American Journal of Health Promotion, 18, 47–57.  https://doi.org/10.4278/0890-1171-19.2.128.CrossRefGoogle Scholar
  22. Fallah Tehrani, A., Cheng, W., Dembczyński, K., & Hüllermeier, E. (2012). Learning monotone nonlinear models using the Choquet integral. Machine Learning, 89, 183–211.  https://doi.org/10.1007/s10994-012-5318-3.CrossRefGoogle Scholar
  23. Fidalgo, C., & Sancho, I. (2004). Evolución del paisaje vegetal en el siglo XX a partir del Catastro de la Propiedad Rústica (Comarca del Alberche, Madrid) [Evolution of plant landscape in the twentieth century from the Rural Property Cadastre (County of Alberche, Madrid)]. CT: Catastro, 52, 55–84. Retrieved from http://www.catastro.meh.es/documentos/publicaciones/ct/ct52/03_catastro.pdf.
  24. Forsyth, A., Oakes, J., Schmitz, K., & Hearst, M. (2007). Does residential density increase walking and other physical activity? Urban Studies, 44, 679–697.  https://doi.org/10.1080/00420980601184729.CrossRefGoogle Scholar
  25. Frank, L. D., Andresen, M. A., & Schmid, T. L. (2004). Obesity relationships with community design, physical activity, and time spent in cars. American Journal of Preventive Medicine, 27(2), 87–96.  https://doi.org/10.1016/j.amepre.2004.04.011.CrossRefGoogle Scholar
  26. Frank, L. D., & Pivo, G. (1994). Impacts of mixed use and density on utilization of three modes of travel: Single occupant vehicle, transit, and walking. Transportation Research Record: Journal of the Transportation Research Board, 1466, 44–52. Retrieved from http://www.reconnectingamerica.org/assets/Uploads/Frank-and-Pivo.pdf.
  27. Frenkel, A., & Ashkenazi, M. (2008a). Measuring urban sprawl: how can we deal with it? Environment and Planning B: Planning and Design, 35, 56–79.  https://doi.org/10.1068/b32155.CrossRefGoogle Scholar
  28. Frenkel, A., & Ashkenazi, M. (2008b). The integrated sprawl index: measuring the urban landscape in Israel. The Annals of Regional Science, 42, 99–121.  https://doi.org/10.1007/s00168-007-0137-3.CrossRefGoogle Scholar
  29. Friedman, B., Gordon, S. P., & Peers, J. B. (1994). Effect of neotraditional neighborhood design on travel characteristics. Transportation Research Record, 1466, 63–70. Retrieved from http://onlinepubs.trb.org/Onlinepubs/trr/1994/1466/1466-009.pdf.
  30. Galster, G., Hanson, R., Ratcliffe, M. R., Wolman, H., Coleman, S., & Freihage, J. (2001). Wrestling Sprawl to the Ground: Defining and measuring an elusive concept. Housing Policy Debate, 12, 681–717.  https://doi.org/10.1080/10511482.2001.9521426.CrossRefGoogle Scholar
  31. Glaeser, E. (2011). Cities, productivity, and quality of life. Science, 333, 592–594.  https://doi.org/10.1126/science.1209264.CrossRefGoogle Scholar
  32. Grabisch, M. (1996). Application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research, 89, 445–456.  https://doi.org/10.1016/0377-2217(95)00176-X.CrossRefGoogle Scholar
  33. Grabisch, M., & Labreuche, C. (2005). Fuzzy measures and integrals in MCDA. In J. Figueira, S. Greco, M. Ehrgott, & Thias (Eds.), Multiple criteria decision analysis: State of the art surveys (pp. 564–608). Boston: Springer.Google Scholar
  34. Handy, S., & Clifton, K. J. (2001). Local shopping as a strategy for reducing automobile travel. Transportation, 28, 317–346.  https://doi.org/10.1023/A:1011850618753.CrossRefGoogle Scholar
  35. Hanham, R., & Spiker, J. S. (2005). Urban sprawl detection using satellite imagery and geographically weighted regression. In R. R. Jensen, J. D. Gatrell, & D. D. McLean (Eds.), Geo-spatial technologies in urban environments: policy, practice, and pixels (pp. 137–151). Berlin: Springer.CrossRefGoogle Scholar
  36. Hennig, E. I., Schwick, C., Soukup, T., Orlitova, E., Kienast, F., & Jaeger, J. A. G. (2015). Multi-scale analysis of urban sprawl in Europe: Towards a European de-sprawling strategy. Land Use Policy, 49, 483–498.  https://doi.org/10.1016/j.landusepol.2015.08.001.CrossRefGoogle Scholar
  37. Ho, D., Newell, G., & Walker, A. (2005). The importance of property-specific attributes in assessing CBD office building quality. Journal of Property Investment & Finance, 23, 424–444.  https://doi.org/10.1108/14635780510616025.CrossRefGoogle Scholar
  38. Johnson, M. P. (2001). Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environment and Planning A, 33, 717–735.  https://doi.org/10.1068/a3327.CrossRefGoogle Scholar
  39. Keeney, R. L., & Raiffa, H. (1976). Decision with multiple objectives. New York: Wiley.Google Scholar
  40. Kerr, J., & Rosenberg, D. (2006). Active commuting to school: associations with environment and parental concerns. Medicine and Science in Sports and Exercise, 38, 787–794.  https://doi.org/10.1249/01.mss.0000210208.63565.73.CrossRefGoogle Scholar
  41. Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., & Kim, E.-S. (2012). Preference-based solution selection algorithm for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16, 20–34.  https://doi.org/10.1109/tevc.2010.2098412.CrossRefGoogle Scholar
  42. Larbani, M., Huang, C.-Y., & Tzeng, G.-H. (2011). A novel method for fuzzy measure identification. International Journal of Fuzzy Systems, 13, 24–34.Google Scholar
  43. Lee, K.-B., & Kim, J.-H. (2013). Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots. IEEE Transactions on Evolutionary Computation, 17, 755–766.  https://doi.org/10.1109/tevc.2013.2240688.CrossRefGoogle Scholar
  44. Lee, H.-H., Yang, T.-T., Chen, C.-B., & Chen, Y.-L. (2011). A fuzzy hierarchy integral analytic expert decision process in evaluating foreign investment entry mode selection for Taiwanese bio-tech firms. Expert Systems with Applications, 38, 3304–3322.  https://doi.org/10.1016/j.eswa.2010.08.116.CrossRefGoogle Scholar
  45. Leslie, E., Saelens, B., Frank, L., Owen, N., Bauman, A., Coffee, N., et al. (2005). Residents’ perceptions of walkability attributes in objectively different neighbourhoods: a pilot study. Health and Place, 11, 227–236.  https://doi.org/10.1016/j.healthplace.2004.05.005.CrossRefGoogle Scholar
  46. Lindsey, G., Han, Y., Wilson, J., & Yang, J. (2006). Neighborhood correlates of urban trail use. Journal of Physical Activity & Health, 3 (Suppl. 1), 139–157. Retrieved from http://activelivingresearch.org/sites/default/files/JPAH_10_Lindsey_0.pdf.
  47. Lopez, R. (2004). Urban sprawl and risk for being overweight or obese. American Journal of Public Health, 94, 1574–1579.  https://doi.org/10.2105/AJPH.94.9.1574.CrossRefGoogle Scholar
  48. Magdi, A. M., & Xiao, W. (2003). Q-measures: An efficient extension of the Sugeno λ-measure. IEEE Transactions on Fuzzy Systems, 11, 419–426. https://doi.org/10.1109/TFUZZ.2003.812701.CrossRefGoogle Scholar
  49. Mazziotta, M., & Pareto, A. (2015). On a generalized non-compensatory composite index for measuring socio-economic phenomena. Social Indicators Research, 127, 983–1003.  https://doi.org/10.1007/s11205-015-0998-2.CrossRefGoogle Scholar
  50. Meyer, P., & Ponthière, G. (2010). Eliciting preferences on multiattribute societies with a choquet integral. Computational Economics, 37, 133–168.  https://doi.org/10.1007/s10614-009-9196-0.CrossRefGoogle Scholar
  51. Mora-García, R. T., & Marti-Ciriquian, P. (2015). Análisis espacial y representación geográfica: innovación y aplicación [Spatial analysis and geographic representation: innovation and applications]. In J. De la Riva, P. Ibarra, R. Montorio, & M. Rodrigues (Eds.) (pp. 305–314). Zaragoza: University of Zaragoza.Google Scholar
  52. Nardo, M., Saisana, M., Saltelli, A., & Tarantola, S. (2005). Tools for composite indicators building. Brussels: European Commission. Retrieved from http://publications.jrc.ec.europa.eu/repository/bitstream/JRC31473/EUR21682EN.pdf.
  53. Norman, G., & Nutter, S. (2006). Community design and access to recreational facilities as correlates of adolescent physical activity and body-mass index. Journal of Physical Activity and Health, 3(Suppl. 1), 118–128. Retrieved from http://activelivingresearch.org/sites/default/files/JPAH_8_Norman_0.pdf.CrossRefGoogle Scholar
  54. Pan, X. Z., Zhao, Q. G., Chen, J., Liang, Y., & Sun, B. (2008). Analyzing the variation of building density using high spatial resolution satellite images: the example of Shanghai City. Sensors, 2541-2550. https://dx.doi.org/10.3390%2Fs8042541.CrossRefGoogle Scholar
  55. Paulsen, K. (2014). Geography, policy or market? New evidence on the measurement and causes of sprawl (and infill) in US metropolitan regions. Urban Studies, 51, 2629–2645.  https://doi.org/10.1177/0042098013512874.CrossRefGoogle Scholar
  56. Pinar, M., Cruciani, C., Giove, S., & Sostero, M. (2014). Constructing the FEEM sustainability index: A Choquet integral application. Ecological Indicators, 39, 189–202.  https://doi.org/10.1016/j.ecolind.2013.12.012.CrossRefGoogle Scholar
  57. Pollesch, N. L., & Dale, V. H. (2016). Normalization in sustainability assessment: Methods and implications. Ecological Economics, 130, 195–208.  https://doi.org/10.1016/j.ecolecon.2016.06.018.CrossRefGoogle Scholar
  58. Rodríguez, D. A., & Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. Transportation Research Part D: Transport and Environment, 9, 151–173.  https://doi.org/10.1016/j.trd.2003.11.001.CrossRefGoogle Scholar
  59. Roemmich, J., Epstein, L., Raja, S., & Yin, L. (2007). The neighborhood and home environments: disparate relationships with physical activity and sedentary behaviors in youth. Annals of Behavioral Medicine, 33, 29–38.  https://doi.org/10.1207/s15324796abm3301_4.CrossRefGoogle Scholar
  60. Rubiera Morollón, F., González Marroquin, V. M., & Pérez Rivero, J. L. (2015). Urban sprawl in Spain : differences among cities and causes. European Planning Studies, 24, 207–226.  https://doi.org/10.1080/09654313.2015.1080230.CrossRefGoogle Scholar
  61. Rundle, A., Diez Roux, A., Free, L., Miller, D., Neckerman, K., & Weiss, C. (2007). The urban built environment and obesity in New York City: a multilevel analysis. American Journal of Health Promotion, 21(Suppl. 4), 326–34. Retrieved from http://activelivingresearch.org/sites/default/files/Rundle.pdf.CrossRefGoogle Scholar
  62. Rutt, C., Coleman, K., & Craig, C. (2005). The impact of the built environment on walking as a leisure-time activity along the US/Mexico border. Journal of Physical Activity and Health, 3, 257–71. Retrieved from http://journals.humankinetics.com/AcuCustom/Sitename/Documents/DocumentItem/4906.pdf.CrossRefGoogle Scholar
  63. Saaty, T. L. (1988). What is the Analytic Hierarchy process? In G. Mitra, H. J. Greenberg, F. A. Lootsma, M. J. Rijkaer, & H. J. Zimmermann (Eds.), Mathematical models for decision support (pp. 109–121). Berlin: Springer.CrossRefGoogle Scholar
  64. Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number seven plus or minus two. Mathematical and Computer Modelling, 38, 233–244.  https://doi.org/10.1016/S0895-7177(03)90083-5.CrossRefGoogle Scholar
  65. Salvati, L. (2015). From sprawl to compactness and back: population dynamics (1848–2011) and the economic structure of a Mediterranean city. GeoJournal, 81, 319–332.  https://doi.org/10.1007/s10708-015-9621-y.CrossRefGoogle Scholar
  66. Santos Preciado, J. M., Azcárate Luxán, M. V., Cocero Matesanz, D., Muguruza Cañas, C., & García Lázaro, F. J. (2012). La cartografía catastral urbana y su utilización en un entorno SIG. Aplicación al estudio del desarrollo residencial del sur de Madrid [Urban cadastral mapping and its use in a GIS environment. Application to the study of residential development of South]. Nimbus, 29–30, 671–685.Google Scholar
  67. Sicilia, M. A., García Barriocanal, E., & Calvo, T. (2003). An inquiry-based method for Choquet Integral-Based aggregation of interface usability parameters. Kibernetika, 39, 601–614. Retrieved from http://www.kybernetika.cz/content/2003/5/601/paper.pdf.
  68. Sturm, R. (2004). The economics of physical activity: Societal trends and rationales for interventions. American Journal of Preventive Medicine.  https://doi.org/10.1016/j.amepre.2004.06.013.CrossRefGoogle Scholar
  69. Sugeno, M. (1974). Theory of Fuzzy Integrals and Its Applications, Ph.D. Dissertation, Tokyo Institute of Technology.Google Scholar
  70. Takahagi, E. (2000). On identification methods of lambda-fuzzy measures using weights and lambda. Journal of Japan Society for Fuzzy Theory and Systems, 12, 665–676.CrossRefGoogle Scholar
  71. Takahagi, E. (2010). Choquet-integral-based evaluations by fuzzy rules: methods for developing fuzzy rule tables on the basis of weights and interaction degrees. In R. Hüllermeier, R. Kruse, & F. Hoffman (Eds.), Communications in Computer and Information Science, 80 part 1 (pp. 515–524). Berlin: Springer.Google Scholar
  72. Terzi, F., & Bölen, F. (2012). The potential effects of spatial strategies on urban sprawl in Istanbul. Urban Studies, 49, 1229–1250.  https://doi.org/10.1177/2F0042098011410334.CrossRefGoogle Scholar
  73. Wakker, P. (1989). Additive representations of preferences. Berlin: Springer.CrossRefGoogle Scholar
  74. Webler, T., Levine, D., Rakel, H., & Renn, O. (1991). A novel approach to reducing uncertainty: the group Delphi. Technological Forecasting and Social Change, 39, 253–263.  https://doi.org/10.1016/0040-1625(91)90040-M.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • David Gálvez Ruiz
    • 1
  • Pilar Diaz Cuevas
    • 2
  • Olta Braçe
    • 2
  • Marco Garrido-Cumbrera
    • 2
  1. 1.Department of Statistics and Operational ResearchUniversidad de SevillaSevilleSpain
  2. 2.Department of Physical Geography and Regional Geographic AnalysisUniversidad de SevillaSevilleSpain

Personalised recommendations