Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Estimating a combined Moho model for marine areas via satellite altimetric - gravity and seismic crustal models

  • 108 Accesses

Abstract

Isostasy is a key concept in geoscience in interpreting the state of mass balance between the Earth’s lithosphere and viscous asthenosphere. A more satisfactory test of isostasy is to determine the depth to and density contrast between crust and mantle at the Moho discontinuity (Moho). Generally, the Moho can be mapped by seismic information, but the limited coverage of such data over large portions of the world (in particular at seas) and economic considerations make a combined gravimetric-seismic method a more realistic approach. The determination of a high-resolution of the Moho constituents for marine areas requires the combination of gravimetric and seismic data to diminish substantially the seismic data gaps. In this study, we estimate the Moho constituents globally for ocean regions to a resolution of 1° × 1° by applying the Vening Meinesz-Moritz method from gravimetric data and combine it with estimates derived from seismic data in a new model named COMHV19. The data files of GMG14 satellite altimetry-derived marine gravity field, the Earth2014 Earth topographic/bathymetric model, CRUST1.0 and CRUST19 crustal seismic models are used in a least-squares procedure. The numerical computations show that the Moho depths range from 7.3 km (in Kolbeinsey Ridge) to 52.6 km (in the Gulf of Bothnia) with a global average of 16.4 km and standard deviation of the order of 7.5 km. Estimated Moho density contrasts vary between 20 kg m-3 (north of Iceland) to 570 kg m-3 (in Baltic Sea), with a global average of 313.7 kg m-3 and standard deviation of the order of 77.4 kg m-3. When comparing the computed Moho depths with current knowledge of crustal structure, they are generally found to be in good agreement with other crustal models. However, in certain regions, such as oceanic spreading ridges and hot spots, we generally obtain thinner crust than proposed by other models, which is likely the result of improvements in the new model. We also see evidence for thickening of oceanic crust with increasing age. Hence, the new combined Moho model is able to image rather reliable information in most of the oceanic areas, in particular in ocean ridges, which are important features in ocean basins.

References

  1. Abrehdary M., Sjöberg L.E. and Bagherbandi M., 2015. Combined Moho constituents determination using CRUST1.0 and Vening Meinesz-Moritz model. J. Earth Sci., 26, 607–616.

  2. Abrehdary M., Sjöberg L.E. and Bagherbandi M., 2016. Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz-Moritz’method. Acta Geod. Geophys., 51, 137–149.

  3. Abrehdary M., Sjöberg L.E., Bagherbandi M. and Sampietro D., 2017. Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. J. Appl. Geodesy, 11, 231–247.

  4. Abrehdary M., Sjöberg L.E. and Sampietro D., 2018. Contribution of satellite altimetry in modelling Moho density contrast in oceanic areas. J. Appl. Geodesy, 13, 33–40.

  5. Abrehdary M. and Sjöberg L.E., 2019. Recovering Moho constituents from satellite altimetry and gravimetric data for Europe and surroundings. J. Appl. Geodesy, 13, 291–303.

  6. Amante C. and Eakins B.W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. NOAA, National Geophysical Data Center, Boulder, CO.

  7. Andersen O.B., Knudsen P. and Berry P.A., 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geodesy, 84, 191–199.

  8. Bagherbandi M. and Sjöberg L.E., 2012. Non-isostatic effects on crustal thickness: a study using CRUST2.0 in Fennoscandia. Phys. Earth Planet. Inter., 200-201, 37–44.

  9. Bai Y., Williams S.E., Müller R.D., Liu Z. and Hosseinpour M., 2014. Mapping crustal thickness using marine gravity data: Methods and uncertainties. Geophysics, 79, G27–G36.

  10. Bai Y., Li M., Wu S., Dong D., Gui Z., Sheng J. and Wang Z., 2019. Upper mantle density modelling for large-scale Moho gravity inversion: case study on the Atlantic Ocean. Geophys. J. Int., 216, 2134–2147.

  11. Bassin C., Laske G. and Masters T.G., 2000. The current limits of resolution for surface wave tomography in North America. Eos Trans. AGU, 81, F897.

  12. Baranov A. and Morelli A, 2013. The Moho depth map of the Antarctica region. Tectonophysics, 609, 299–313.

  13. Carlson R.L. and Raskin G.S., 1984. Density of the ocean crust. Nature, 311, 555–558.

  14. Chappell A.R. and Kusznir N. J., 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophys. J. Int., 174, 1–13.

  15. Christensen N. and Mooney W., 1995. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res.-Atmos., 100, 9761–9788.

  16. Chulick G. and Mooney W., 2002. Seismic structure of the crust and uppermost mantle of North America and adjacent ocean basins: A synthesis. Bull. Seismol. Soc. Amer, 92, 2478–2492.

  17. Chulick G.S., Detweiler S. and Mooney W.D., 2013. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. J. South Am. Earth Sci., 42, 260–276.

  18. Danesi S. and Morelli A., 2001. Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys. Res. Lett, 28, 4395–4398.

  19. Eshagh M., Bagherbandi M. and Sjöberg L., 2011. A combined global Moho model based on seismic and gravimetric data. Acta Geod. Geophys. Hung., 46, 25–38.

  20. Grad M. and Tiira T., 2009. The Moho depth map of the European Plate. Geophys. J. Int., 176, 279–292.

  21. Hamayun H., 2014. Global Earth Structure Recovery from State-of-the-Art Models of the Earth’s Gravity Field and Additional Geophysical Information. PhD Thesis. Delft University of Technology, Delft, The Netherlands.

  22. Hansen S.E., Nyblade A.A., Heeszel D.S., Wiens D.A., Shore P. and Kanao M., 2010. Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth Planet. Sci. Lett, 300, 395–401.

  23. Hello Y., Ogé A., Sukhovich A. and Nolet G, 2011. Modern mermaids: New floats image the deep Earth. Eos Trans. AGU, 92(40), 337–338.

  24. Hirt C. and Rexer M., 2015., Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - Available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf., 39, 103–112.

  25. Kanao M., Fujiwara A., Miyamachi H., Toda S., Ito K., Tomura M., Ikawa T. and Group T.S.G., 2011. Reflection imaging of the crust and the lithospheric mantle in the Lützow-Holm complex, Eastern Dronning Maud Land, Antarctica, derived from the SEAL transects. Tectonophysics, 508, 73–84

  26. Kennett B.L.N., Salmon M. and Saygin E., 2011. AusMoho: the variation of Moho depth in Australia. Geophys. J. Int., 187, 946–958.

  27. Kind R., Yuan X. and Kumar P., 2012. Seismic receiver functions and the lithosphere-asthenosphere boundary. Tectonophysics, 536, 25–43.

  28. Kobayashi R. and Zhao D., 2004. Rayleigh-wave group velocity distribution in the Antarctic region. Phys. Earth Planet. Inter, 141, 167–181.

  29. Laske G., Ma Z., Masters G. and Pasyanos M.E., 2013. A New Global Crustal Model at 1x 1 Degrees (CRUST1.0).http://igppweb.ucsd.edu/~gabi/crust1.html.

  30. Laske G. and Masters G, 1997. A global digital map of sediment thickness. Eos Trans. AGU, 78 (F483).

  31. Lebedev S., Adam J.M.C. and Meier T., 2013. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics, 609, 377–394.

  32. Lloyd S., van der Lee S., Franca G.S., Assumpcao M. and Feng M., 2010. Moho map of South America from receiver functions and surface waves. J. Geophys. Res.-Solid Earth, 115, B11315.

  33. Marone F., Van Der Meijde M., Van Der Lee S. and Giardini D., 2003. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region. Geophys. J. Int., 154, 499–514.

  34. Meier U., Curtis A. and Trampert J., 2007. Global crustal thickness from neural network inversion of surface wave data. Geophys. J. Int., 169, 706–722.

  35. Mooney W.D., Laske G. and Masters T.G., 1998. CRUST5.1: A global crustal model at 5° x 5°. J Geophys. Res.-Solid Earth, 103, 727–747.

  36. Müller R.D., Sdrolias M., Gaina C. and Roest W.R., 2008. Age, spreading rates, and spreading asymmetry of the worlds ocean crust. Geochem. Geophys. Geosyst, 9, Q04006.

  37. Pasyanos M.E. and Nyblade A.A., 2007. A top to bottom lithospheric study of Africa and Arabia. Tectonophysics, 444, 27–44.

  38. Prodehl C. and Mooney W.D. (Eds), 2012. Exploring the Earth’s Crust - History and Results of Controlled-Source Seismology. GSA Memoir 208. Geological Society of America, Boulder, CO.

  39. Rapp R.H., 1980. A comparison of altimeter and gravimetric geoids in the Tonga Trench and Indian Ocean areas. Bull. Geod, 54, 149–163.

  40. Reguzzoni M. and Sampietro D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf., 35, 31–43.

  41. Reguzzoni M., Sampietro D. and Sansò F., 2013. Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys. J. Int., 195, 222–237.

  42. Ritzwoller M.H., Shapiro N.M., Levshin A.L. and Leahy G.M., 2001. Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J. Geophys. Res.-Solid Earth, 106, 30645–30670.

  43. Sandwell D.T., Müller R.D., Smith W.H., Garcia E. and Francis R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 65–67.

  44. Shapiro N.M. and Campillo M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31, L07614.

  45. Sjöberg L.E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int., 179, 1527–1536.

  46. Sjöberg L.E., 2013. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys. J. Int., 193, 1277–1282.

  47. Sjöberg L.E. and Bagherbandi M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys., 59, 502–525.

  48. Sjöberg L.E., Bagherbandi M. and Tenzer R., 2015. On gravity inversion by no-topography and rigorous isostatic gravity anomalies. Pure Appl. Geophys., 172, 2669–2680.

  49. Szwillus W., Afonso J.C., Ebbing J. and Mooney W.D., 2019. Global crustal thickness and velocity structure from geostatistical analysis of seismic data. J. Geophys. Res.-Solid Earth, 124, 1626–1652.

  50. Sutra E. and Manatschal G., 2012. How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology, 40, 139–142.

  51. Tenzer R. and Bagherbandi M., 2012. Reformulation of the Vening Meinesz-Moritz inverse problem of isostasy for isostatic gravity disturbances. Int. J. Geosci, 3, 918–929.

  52. Tenzer R. and Chen W., 2014. Expressions for the global gravimetric Moho modeling in spectral domain. Pure Appl. Geophys., 171, 1877–1896.

  53. Tenzer R., Chen W., Tsoulis D., Bagherbandi M., Sjöberg L.E., Novák P. and Jin S., 2015a. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv. Geophys., 36, 139–165.

  54. Tenzer R., Chen W. and Jin S., 2015b. Effect of upper mantle density structure on Moho geometry. Pure Appl. Geophys., 172, 1563–1583.

  55. Tenzer R., Chen W., Tsoulis D., Bagherbandi M., Sjöberg L.E., Novák P. and Jin S., 2015c. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv. Geophys., 36, 139–165.

  56. Wang T., Lin J., Tucholke B. and Chen Y.J., 2011. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochem. Geophys. Geosyst, 12, Q0AE02.

  57. Zhu L. and Kanamori H., 2000. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res.-Solid Earth, 105(B2), 2969–2980.

  58. Zhou Y., Nolet G., Dahlen F.A. and Laske G., 2006. Global upper-mantle structure from finite-frequency surface-wave tomography. J. Geophys. Res.-Solid Earth, 111(B4), B04304.

Download references

Acknowledgments

This study was supported by project no. 187/18 of the Swedish National Space Agency (SNSA).

Author information

Correspondence to Majid Abrehdary.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provided a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abrehdary, M., Sjöberg, L.E. Estimating a combined Moho model for marine areas via satellite altimetric - gravity and seismic crustal models. Stud Geophys Geod 64, 1–25 (2020). https://doi.org/10.1007/s11200-019-1067-0

Download citation

Keywords

  • Vening Meinesz-Moritz
  • satellite altimetry
  • Moho depth
  • Moho density contrast
  • uncertainty