Advertisement

Studia Geophysica et Geodaetica

, Volume 63, Issue 4, pp 509–519 | Cite as

Determination of the local tidal parameters for the Borowiec station using Satellite Laser Ranging data

  • Marcin JagodaEmail author
  • Miłosława Rutkowska
Article
  • 39 Downloads

Abstract

The values of regional tidal parameters h2, l2 associated with the tidal variations of ground stations were estimated for the Polish Satellite Laser Ranging (SLR) station Borowiec using SLR data. The study is based on satellite observations taken by the global network of ground stations during the period from January 1, 1999 until January 1, 2019 for monthly orbital arcs of the satellites LAGEOS-1 and LAGEOS-2. The adjusted regional values for h2 equalling 0.7308 ± 0.0008 and l2 equalling 0.1226 ± 0.0003 are discussed and compared with the nominal values of h2 and l2 given in the the International Earth Rotation and Reference Systems Service (IERS) standards and with other estimations of these parameters. Furthermore, the influence of the tidal parameters changes on estimation of the Borowiec station coordinates in the ITRF2014 reference frame was investigated. The analysis was carried out in two variants. The first one consisted in the determination of the Borowiec station coordinates with the use of the nominal values of the tidal parameters: h2 = 0.6078 and l2 = 0.0847 (IERS recommended values). In the second one, the Borowiec station coordinates were determined using the local tidal parameters estimated in this paper (h2 = 0.7308 ± 0.0008 and l2 = 0.1226 ± 0.0003). The differences between X, Y ,Z for Variant 1 and Variant 2 are −3.5, 3.3 and 4.2 mm, respectively.

Keywords

Borowiec laser station SLR local tidal parameters ITRF2014 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alothman A.O. and Schillak S., 2014. Recent results for the Arabian Plate motion using Satellite Laser Ranging observations of Riyadh SLR station to LAGEOS-1 and LAGEOS-2 satellites. Arab. J. Sci. Eng., 39, 217–226.CrossRefGoogle Scholar
  2. Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geoph. Res.-Solid Earth, 121, 6109–6131.CrossRefGoogle Scholar
  3. Bizouard Ch., Lambert S., Gattano C., Becker O. and Richard J.Y., 2018. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geodesy, 93, 621–633.CrossRefGoogle Scholar
  4. Folkner W.M., Charlot P., Finger M.H., Williams J.G., Sovers O.J., Newhall X.X. and Standish E.M. Jr., 1994. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements. Astron. Astrophys., 287, 279–289.Google Scholar
  5. Golonka J., Ślączka A. and Picha F., 2003. Geodynamic evolution of the orogen: the West Carpathians and Ouchaitas case study. Ann. Soc. Geol. Pol., 75, 145–167.Google Scholar
  6. Grad M., Polkowski M. and Ostafczuk S.R., 2016. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland. Tectonophysics, 666, 188–210.CrossRefGoogle Scholar
  7. Haas R., Gueguen E., Scherneck H.G., Nothnagel A. and Campbell J., 2000. Crustal motion results derived from observations in the European geodetic VLBI network. Earth Planets Space, 52, 759–764.CrossRefGoogle Scholar
  8. Herring T.A. and Dong D., 1994. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth. J. Geophys. Res., 99, 18051–18071.CrossRefGoogle Scholar
  9. Jagoda M., 2019. Influence of use of different tidal parameters h 2, l 2 values on determination of SLR stations coordinates. Stud. Geophys. Geod., 63, 71–82.CrossRefGoogle Scholar
  10. Jagoda M. and Rutkowska M., 2016. Estimation of the Love numbers: k 2, k 3 using SLR data of the LAGEOS1, LAGEOS2, STELLA and STARLETTE satellites. Acta Geod. Geophys., 51, 493–504.CrossRefGoogle Scholar
  11. Jagoda M., Rutkowska M. and Kraszewska K., 2017. The evaluation of time variability of tidal parameters h and l using SLR technique. Acta Geodyn. Geomater., 14, 153–158.Google Scholar
  12. Jagoda M., Rutkowska M., Kraszewska K. and Suchocki C., 2018. Time changes of the potential Love tidal parameters k 2 and k 3. Stud. Geophys. Geod., 62, 586–595.CrossRefGoogle Scholar
  13. Krásná H., Böhm J. and Schuh H., 2013. Tidal Love and Shida numbers estimated by geodetic VLBI. J. Geodyn., 70, 21–27.CrossRefGoogle Scholar
  14. Kucharski D., Kirchner G., Schillak S. and Cristea E., 2007. Spin determination of LAGEOS-1 from kHz laser observations. Adv. Space Res., 39, 1576–1581.CrossRefGoogle Scholar
  15. Kucharski D., Kirchner G., Koidl F. and Cristea E., 2009. 10 years of LAGEOS-1 and 15 years of LAGEOS-2 spin period determination from SLR data. Adv. Space Res., 43, 1926–1930.CrossRefGoogle Scholar
  16. Lejba P., Suchodolski T., Michałek P., Bartoszak J., Schillak S. and Zapaśnik S., 2018. First laser measurements to space debris in Poland. Adv. Space Res., 61, 2609–2616.CrossRefGoogle Scholar
  17. Majorowicz J., Čermák V., Šafanda J., Krzywiec P., Wróblewska M., Guterech A. and Grad M., 2003. Heat flow models acroos the Trans-European Suture Zone in the area of the POLONAISE’97 seismic experiment. Phys. Chem. Earth, 28, 375–391.CrossRefGoogle Scholar
  18. McCarthy J.J., Rowton, S. Moore, D. Pavlis, D.E. Luthcke S.B. and Tsaoussi L.S., 1993. GEODYN II System Operation Manual, 1–5. STX System Corp., Lanham, MD.Google Scholar
  19. Mendes V.B. and Pavlis E.C., 2004. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, L14602.CrossRefGoogle Scholar
  20. Petecki Z., Polechońska O., Cieśla E. and Wybraniec S., 2003. Magnetic Map of Poland. Scale 1:500,000. Polish Geological Institute, Warsaw, Poland.Google Scholar
  21. Petit G. and Luzum B., 2010. IERS Conventions. IERS Technical Note No. 36. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt an Main, Germany.Google Scholar
  22. Pearlman M.R., Degnan J.J. and Bosworth J.M., 2002. The International Laser Ranging Service. Adv. Space Res., 30, 135–143.CrossRefGoogle Scholar
  23. Pearlman M.R., Arnold D., Davis M., Barlier F., Biancale R., Vasiliev V., Ciufolini I., Paolozzi A., Pavlis E.C., Sośnica K. and Bloßfeld M., 2019. Laser geodetic satellites: a high-accuracy scientific tool. J. Geodesy, DOI:  https://doi.org/10.1007/s00190-019-01228-y (in print).Google Scholar
  24. Ray R.D., 2013. Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res.-Oceans, 118, 4570–4584.CrossRefGoogle Scholar
  25. Ray R.D. and Ponte R.M., 2003. Barometric tides from ECMWF operational analyses. Ann. Geophys., 21, 1897–1910.CrossRefGoogle Scholar
  26. Ray R.D., Bettadpur S., Eanes R.J. and Schrama E.J.O., 1995. Geometrical determination of the Love number h2 at four tidal frequencies. Geophys. Res. Lett., 22, 2175–2178.CrossRefGoogle Scholar
  27. Rutkowska M. and Jagoda M., 2010. Estimation of the elastic Earth parameters (h2, l2) using SLR data. Adv. Space Res., 46, 859–871.CrossRefGoogle Scholar
  28. Rutkowska M. and Jagoda M., 2015. SLR technique used for description of the Earth elasticity. Artif. Satell., 50, 127–141.CrossRefGoogle Scholar
  29. Schillak S., 2004. Analysis of the process of the determination of station coordinates by satellite laser ranging based on results of the Borowiec SLR station in 1993.5–2000.5. Part 2: Determination of the station coordinates. Artif. Satell., 39, 265–287.Google Scholar
  30. Schillak S. and Wnuk E., 2003. The SLR stations coordinates determined from monthly arcs of Lageos-1 and Lageos-2 laser ranging in 1999–2001. Adv. Space Res., 31, 413–418.CrossRefGoogle Scholar
  31. Sośnica K., 2014. LAGEOS sensitivity to ocean tides. Acta Geophys., 63, 1181–1203.CrossRefGoogle Scholar
  32. Sośnica K., Thaller D., Jäggi A., Dach R. and Beutler G., 2012. Sensitivity of Lageos orbits to global gravity field models. Artif. Satell., 47, 47–65.CrossRefGoogle Scholar
  33. Tapley B.D., Flechtner F., Bettadpur S.V. and Watkins M.M. 2013. The status and future prospect for GRACE after the first decade. Abstract. American Geophysical Union Fall Meeting 2013, (http://abstractsearch.agu.org/meetings/2013/FM/G32A-01.html).
  34. Teisseyre R. and Teisseyre B., 2002. Wawrzyniec Karol de Teisseyre: a pioneer in the study of “cryptotectonics”. Eos Trans. AGU, 83, 541–546.CrossRefGoogle Scholar
  35. Torrence M.H., Klosko S.M. and Christodoulidis D.C., 1984. The construction and testing of normal points at Goddard Space Flight Center. 5th International Workshop on Laser Ranging Instrumentation, Herstmonceux, U.K. Geodetic Institute, University of Bonn, Bonn, Germany, 506–511.Google Scholar
  36. Wilde-Piórko M., Świerczak M., Grad M. and Majdański M., 2010. Integrated seismic model of the crust and upper mantle of the Trans-European Suture Zone between the Precambrian craton and Phanerozoic terranes in Central Europe. Tectonophysics, 481, 108–115.CrossRefGoogle Scholar
  37. Wu B., Bibo P., Zhu Y. and Hsu H., 2001. Determination of Love numbers using Satellite Laser Ranging. J. Geod. Soc. Japan, 47, 174–180.Google Scholar

Copyright information

© Inst. Geophys. CAS, Prague 2019

Authors and Affiliations

  1. 1.Department of GeodesyTechnical University of KoszalinKoszalinPoland

Personalised recommendations