Transient compression fault slip detected within andesitic rocks of the Casma Group, Lima, Peru

  • Jan KlimešEmail author
  • Edmundo Norabuena
  • Josef Stemberk
  • Miloš René


A fault slip within the Ñaña tunnel Lima, Peru has been monitored since 2012. The data are recorded using an optical-mechanical 3D extensometer, capable of providing very precise long-term three-dimensional measurements of relative displacement across discontinuities. The Ñaña tunnel has an extremely stable environment and cannot possibly be affected by gravitationally-induced mass movements. The host rock of the tunnel is an aphanitic hornblende-bearing basaltic trachyandesite. Several fault and fracture zones detected in the tunnel represent the major discontinuities of the broader surrounding of the monitored site. The recorded fault slip on the NNW-SSE and E-W striking fracture and fault, with inclinations of 76° to WSW and 78° to N respectively, appoint to compressional event (discontinuity contraction) with a maximum horizontal compression stress axis oriented approximately WSW to ENE corresponding to the direction of the Nazca and South America plates convergence. This event resulted in an aseismic slow fault slip between July 2012 and May 2013. The anticipated compression orientation matches the previously published in-situ stress measurements and fault plane solutions, as well as GPS measurements of the movements of the corresponding part of the Peruvian coast. Nevertheless, the presented monitoring results reflect only short-term fault slip dynamics and need to be considered with caution, even though they correspond to the overall tectonic activity driven by continental subduction.


3D extensometer TM-71 fault slip monitoring seismicity andesite Peru 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atherton M.P., 1981. Horizontal and vertical zoning in the Peruvian Coastal Batholith. J. Geol. Soc., 138, 343–349.CrossRefGoogle Scholar
  2. Beck L.S., 1990. Variations in the mode of great earthquake rupture along the central Peru subduction zone. Geophys. Res. Lett., 17, 1969–1972.CrossRefGoogle Scholar
  3. Briestenský M., Stemberk J. and Petro L., 2007. Displacements registered around March 13, 2006 Vrbové earthquake, M = 3.2 (Western Carpathians). Geol. Carpath., 58, 487–493.Google Scholar
  4. Briestenský M., Stemberk J. and Rowberry M.D., 2014. The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Západní Cave, Czech Republic. Acta Carsologica, 43, 129–138.CrossRefGoogle Scholar
  5. Briestenský M., Rowberry M.D., Stemberk J., Stefanov P., Vozár J., Šebela S., Petro L., Bella P., Gaal L. and Ormukov Ch., 2015. Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria). Geol. Carpath., 66, 427–438.CrossRefGoogle Scholar
  6. Cobbing E.J. and Pitcher W.S., 1972. The Coastal batholith of central Peru. J. Geol. Soc., 128, 421–460.CrossRefGoogle Scholar
  7. Dorbath L., Cisternas A. and Dorbath C., 1990. Assesmenwt of the size of large and great historical earthquakes in Peru. Bull. Seismol. Soc. Amer., 80, 551–576.Google Scholar
  8. Gonzales L. and Pfiffner O.A., 2012. Morphologic evolution of the Central Andes of Peru. Int. J. Earth Sci., 101, 307–321.CrossRefGoogle Scholar
  9. Haederle M. and Atherton M.P., 2002. Shape and intrusion style of the Coastal Batholith, Peru. Tectonophysics, 345, 17–28.CrossRefGoogle Scholar
  10. Jedlicka K. and Mentlík P., 2003. Use of some parts of morphostructural analysis in GIS. Geomorfologický Sborník, 200, 223–231 (in Czech).Google Scholar
  11. Karakouzian M., Candia M.A., Wyman R.V., Watkins M.D. and Hudyma N., 1997. Geology of Lima, Peru. Environ. Eng. Geosci., 3, 55–88.CrossRefGoogle Scholar
  12. Keres M., 2010. Adaptation to the Climate Change in the Rímac River Basin. Federal Ministry of Economic Cooperation and Development, Berlin, Germany (http://www.kfwentwicklungsbank. de/ebank/DE_Home/Sektoren/Wasser/Klimawandel/River_Basin_Snapshot _Rimac.pdf).Google Scholar
  13. Klimeš J., Rowberry M.D., Blahut J., Briestenský M., Hartvich F., Košták B., Rybár J., Stemberk J. and Štepancíková P., 2012. The monitoring of slow-moving landslides and assessment of stabilisation measures using an optical-mechanical crack gauge. Landslides, 9, 407–415.CrossRefGoogle Scholar
  14. Košták B., 1969. A new device for in situ movement detection and measurement. Exp. Mech., 9, 374–379.CrossRefGoogle Scholar
  15. Košták B., Vilímek V. and Zapata M.L., 2002. Registration of microdisplacement at a Cordillera Blanca fault scarp. Acta Montana Ser. A, 19, 61–74.Google Scholar
  16. Košták B., Cacon S., Dobrev N.D., Avramova-Tacheva E., Fecker E., Kopecký J., Petro L., Schweizer R. and Nikonov A.A., 2007. Observations of tectonic microdisplacements in Europe in relation to the Iran 1997 and Turkey 1999 earthquakes. Izv.-Phys. Solid Earth, 43, 503–516.CrossRefGoogle Scholar
  17. Košták B., Mrlina J., Stemberk J. and Chán B., 2011. Tectonic movements monitored in the Bohemian Massif. J. Geodyn., 52, 34–44.CrossRefGoogle Scholar
  18. Kowalczyk K., 2015. The creation of a model of relative vertical crustal movements in the Polish territory on the basis of the data from active geodetic network EUPOS (ASG EUPOS). Acta Geodyn. Geomat., 179, 215–225.Google Scholar
  19. Macharé J., Fenton C.H., Machette M.N., Lavenu A., Costa C. and Dart L.R., 2003. Database and Map of Quaternary Faults and Folds in Perú and its Offshore Region. USGS Open-File Report 03–451, Denver, CO.CrossRefGoogle Scholar
  20. Marti X., Rowberry D.M. and Blahut J., 2012. A MATLAB code for counting the moiré interference fringes recorded by the optical- mechanical crackgaugeTM-71. Comput. Geosci., 52, 164–167.CrossRefGoogle Scholar
  21. McCourt W.J., 1981 The geochemistry and petrography of the Coastal Batholith of Peru, Lima segment. J. Geol. Soc., 138, 407–420.CrossRefGoogle Scholar
  22. Méndez W., 2005. Contamination of Rímac River Basin, Peru Due to Mining Tailings. MSc. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  23. Moncayo O.P., Vidal J.C. and Velazquéz Ch.V., 1992. Geología de los quadrangulos de Lima, Lurin, Chancay y Chosica. INGEMET, Boletín, 43, 1–84 (in Spanish).Google Scholar
  24. Nocquet J.-M., Villegas-Lanza J.C., Chlieh M., Mothes P.A., Rolandone F., Jarrin P., Cisneros D., Alvarado A., Audin L., Bondoux F., Martin X., Font Y., Régnier M., Vallée M., Tran T., Beauval C., Maguina J.M., Martinez W., Tavera H. and Yepes H., 2014. Motion of continental slivers and creeping subduction in the northern Andes. Nat. Geosci., 7, 287–291.CrossRefGoogle Scholar
  25. Norabuena E. and Given H., 1994. NNA a brief history of the seismographic station at Nana, Peru. IRIS Newsl., 13, 8–9.Google Scholar
  26. Norabuena E.O., Leffler L., Mao A., Dixon T., Stein S., Sacks I.S., Ocola L. and Ellis M., 1998. Space geodetic observations of Nazca-South America convergence across the Central Andes. Science, 279, 358–362.CrossRefGoogle Scholar
  27. Norabuena E.O., Pollitz F. and Dixon, T.H., 2013. The Lima-Peru seismic gap: a study of interseismic strain accumulation from a decade of GPS measurements. AGU Spring Meeting Abstracts ( Scholar
  28. Perfettini H., Avouac J.P., Tavera H., Kositsky A., Nocquet J.M., Bondoux F., Chlieh M., Sladen A., Audin L., Farber D.L. and Soler P., 2010. Seismic and aseismic slip on the Central Peru megathrust. Nature, 465, 78–81.CrossRefGoogle Scholar
  29. Ramos T.V., 1977. Plano geotectónico-geodynámico de la cuenca del Rio Rímac. 1:100000. INGEOMIN, Caracas, Venezuela.Google Scholar
  30. Stemberk J. and Hartvich F., 2011. Fault slips recorded in the Strašín cave (SW Bohemian Massif). Acta Geodyn. Geomat., 8, 413–423.Google Scholar
  31. Stemberk J. and Košták B., 2008. Recent tectonic microdisplacements registered in Bedrichov Tunnel “A” in the Jizerské hory Mts. (N Bohemia). Acta Geodyn. Geomat., 5, 377–388.Google Scholar
  32. Stemberk J. and Štepancíková P., 2003. Tectonic setting and newly organised monitoring of recent tectonic deformation in the Rychlebské hory Mts. Acta Mont. Ser. AB, 23, 1–9.Google Scholar
  33. Stemberk J., Briestenský M. and Cacon, S., 2015. The recognition of transient compressional fault slow-slip along the northern shore of Hornsund Fjord, SW Spitsbergen, Svalbard. Pol. Polar Res., 36, 109–123.CrossRefGoogle Scholar
  34. Stemberk J., Dal Moro G.C., Stemberk J., Blahut, J., Coubal M., Košták B., Zambrano M. and Tondi E., 2019. Strain monitoring of active faults in the central Apennines (Italy) during the period 2002–2017. Tectonophysics, 750, 22–35, DOI: 10.1016/j.tecto.2018.10.033.CrossRefGoogle Scholar
  35. Stemberk J., Košták B. and Cacon S., 2010. A tectonic pressure pulse and increased geodynamic activity recorded from the long-term monitoring of faults in Europe. Tectonophysics, 487, 1–12.CrossRefGoogle Scholar
  36. Stemberk J., Košták B. and Vilímek V., 2003. 3D monitoring of active tectonic structures. J. Geodyn., 36, 103–112.CrossRefGoogle Scholar
  37. Villegas-Lanza J.C., Chlieh M., Cavalié O., Tavera H., Baby P., Chire-Chira J. and Nocquet J.-M., 2016. Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. J. Geoph. Res.-Solid Earth, 121, 7371–7394.CrossRefGoogle Scholar
  38. Walker C.F., 2008. Shaky Colonialism: The 1746 Earthquake-Tsunami in Lima, Peru, and Its Long Aftermath. Duke University Press, Durham, NC.CrossRefGoogle Scholar
  39. Wipf M.A., 2006. Evolution of the Western Cordillera and Coastal margin of Peru: Evidence from Low-Temperature Thermochronology and Geomorphology. Ph.D. Thesis No. 16383, Swiss Federal Institute of Technology, Zurich, Switzerland.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2019

Authors and Affiliations

  • Jan Klimeš
    • 1
    Email author
  • Edmundo Norabuena
    • 2
  • Josef Stemberk
    • 1
  • Miloš René
    • 1
  1. 1.Institute of Rock Structures and MechanicsThe Czech Academy of SciencesPragueCzech Republic
  2. 2.Instituto Geofísico del Perú (IGP)Lima 12Peru

Personalised recommendations