Advertisement

Identifying collaboration dynamics of bipartite author-topic networks with the influences of interest changes

  • Diana PurwitasariEmail author
  • Chastine Fatichah
  • Surya Sumpeno
  • Christian Steglich
  • Mauridhi Hery Purnomo
Article

Abstract

Knowing driving factors and understanding researcher behaviors from the dynamics of collaborations over time offer some insights, i.e. help funding agencies in designing research grant policies. We present longitudinal network analysis on the observed collaborations through co-authorship over 15 years. Since co-authors possibly influence researchers to have interest changes, by focusing on researchers who could become the influencer, we propose a stochastic actor-oriented model of bipartite (two-mode) author-topic networks from article metadata. Information of scientific fields or topics of article contents, which could represent the interests of researchers, are often unavailable in the metadata. Topic absence issue differentiates this work with other studies on collaboration dynamics from article metadata of title-abstract and author properties. Therefore, our works also include procedures to extract and map clustered keywords as topic substitution of research interests. Then, the next step is to generate panel-waves of co-author networks and bipartite author-topic networks for the longitudinal analysis. The proposed model is used to find the driving factors of co-authoring collaboration with the focus on researcher behaviors in interest changes. This paper investigates the dynamics in an academic social network setting using selected metadata of publicly-available crawled articles in interrelated domains of “natural language processing” and “information extraction”. Based on the evidence of network evolution, researchers have a conformed tendency to co-author behaviors in publishing articles and exploring topics. Our results indicate the processes of selection and influence in forming co-author ties contribute some levels of social pressure to researchers. Our findings also discussed on how the co-author pressure accelerates the changes of interests and behaviors of the researchers.

Keywords

Longitudinal network analysis Scientific collaboration dynamics Research interest changes One mode co-author network Bipartite (two-mode) author-topic network Stochastic actor-oriented model 

Mathematics Subject Classification

68T30 68U15 90B15 91B16 91C20 91D30 

JEL Classification

C31 C38 C44 D80 D85 

Notes

Acknowledgements

This work as parts of a dissertation about scholar profiles in expert recommendation system was funded by the Indonesia Endowment Fund for Education (LPDP in Indonesian) with the grant number PRJ-4228/LPDP.3/2016 of the LPDP Doctoral Scholarship Programme fiscal year 2017–2020. Some sections of the manuscript was prepared during September-December 2018 in University of Groningen, the Netherlands under Enhancing International Publication (EIP or PKPI in Indonesian) Program by Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI in Indonesian). Furthermore, this research was also partially funded by RISTEKDIKTI under World Class Universities (WCU) Program managed by Institut Teknologi Bandung, Indonesia in 2019.

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. Abbasi, A., Hossain, L., Uddin, S., & Rasmussen, K. J. R. (2011). Evolutionary dynamics of scientific collaboration networks: Multi-levels and cross-time analysis. Scientometrics,89(2), 687.  https://doi.org/10.1007/s11192-011-0463-1.CrossRefGoogle Scholar
  2. Abrahams, B., Sitas, N., & Esler, K. J. (2019). Exploring the dynamics of research collaborations by mapping social networks in invasion science. Journal of Environmental Management,229, 27–37.  https://doi.org/10.1016/j.jenvman.2018.06.051.CrossRefGoogle Scholar
  3. Amjad, T., Daud, A., & Song, M. (2018). Measuring the impact of topic drift in scholarly networks. In Companion Proceedings of the The Web Conference 2018 (pp. 373–378). Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee.  https://doi.org/10.1145/3184558.3186358.
  4. Aubaidan, B., Mohd, M., & Albared, M. (2014). Comparative study of K-means and K-Means ++ clustering algorithms on crime domain. Journal of Computer Science,10(7), 1197–1206.  https://doi.org/10.3844/jcssp.2014.1197.1206.CrossRefGoogle Scholar
  5. Ayaz, S., Masood, N., & Islam, M. A. (2018). Predicting scientific impact based on h-index. Scientometrics,114(3), 993–1010.  https://doi.org/10.1007/s11192-017-2618-1.CrossRefGoogle Scholar
  6. Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). Research-paper recommender systems: A literature survey. International Journal on Digital Libraries,17(4), 305–338.  https://doi.org/10.1007/s00799-015-0156-0.CrossRefGoogle Scholar
  7. Bozeman, B., & Corley, E. (2004). Scientists’ collaboration strategies: implications for scientific and technical human capital. Research Policy,33(4), 599–616.  https://doi.org/10.1016/j.respol.2004.01.008.CrossRefGoogle Scholar
  8. Datta, S., Basuchowdhuri, P., Acharya, S., & Majumder, S. (2017). The habits of highly effective researchers: An empirical study. IEEE Transactions on Big Data,3(1), 3–17.  https://doi.org/10.1109/TBDATA.2016.2611668.CrossRefGoogle Scholar
  9. Daud, A., Li, J., Zhou, L., & Muhammad, F. (2010). Temporal expert finding through generalized time topic modeling. Knowledge-Based Systems,23(6), 615–625.  https://doi.org/10.1016/j.knosys.2010.04.008.CrossRefGoogle Scholar
  10. de Siqueira, G. O., Canuto, S., Gonçalves, M. A., & Laender, A. H. F. (2018). A pragmatic approach to hierarchical categorization of research expertise in the presence of scarce information. International Journal on Digital Libraries.  https://doi.org/10.1007/s00799-018-0260-z.CrossRefGoogle Scholar
  11. Deng, H., Han, J., Lyu, M. R., & King, I. (2012). Modeling and exploiting heterogeneous bibliographic networks for expertise ranking. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (pp. 71–80).  https://doi.org/10.1145/2232817.2232833.
  12. Ebadi, A., & Schiffauerova, A. (2015). On the relation between the small world structure and scientific activities. PLoS ONE,10(3), e0121129.  https://doi.org/10.1371/journal.pone.0121129.CrossRefGoogle Scholar
  13. Ferligoj, A., Kronegger, L., Mali, F., Snijders, T. A. B., & Doreian, P. (2015). Scientific collaboration dynamics in a national scientific system. Scientometrics,104(3), 985–1012.  https://doi.org/10.1007/s11192-015-1585-7.CrossRefGoogle Scholar
  14. Fu, T. Z. J., Song, Q., & Chiu, D. M. (2014). The academic social network. Scientometrics,101(1), 203–239.  https://doi.org/10.1007/s11192-014-1356-x.CrossRefGoogle Scholar
  15. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences,101(Supplement 1), 5228–5235.  https://doi.org/10.1073/pnas.0307752101.CrossRefGoogle Scholar
  16. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences,102(46), 16569–16572.  https://doi.org/10.1073/pnas.0507655102.CrossRefzbMATHGoogle Scholar
  17. Hornik, K., Feinerer, I., Kober, M., & Buchta, C. (2012). Spherical k-means clustering. Journal of Statistical Software Articles,50(10), 1–22.  https://doi.org/10.18637/jss.v050.i10.CrossRefGoogle Scholar
  18. Hou, H., Wang, C., Luan, C., Wang, X., & Zhuang, P. (2013). The dynamics of scientific collaboration networks in scientometrics. COLLNET Journal of Scientometrics and Information Management,7(1), 121–140.  https://doi.org/10.1080/09737766.2013.802627.CrossRefGoogle Scholar
  19. Iefremova, O., Wais, K., & Kozak, M. (2018). Biographical articles in scientific literature: Analysis of articles indexed in Web of Science. Scientometrics,117(3), 1695–1719.  https://doi.org/10.1007/s11192-018-2923-3.CrossRefGoogle Scholar
  20. Iglič, H., Doreian, P., Kronegger, L., & Ferligoj, A. (2017). With whom do researchers collaborate and why? Scientometrics,112(1), 153–174.  https://doi.org/10.1007/s11192-017-2386-y.CrossRefGoogle Scholar
  21. Jung, J. J. (2015). Big bibliographic data analytics by random walk model. Mobile Networks and Applications,20(4), 533–537.  https://doi.org/10.1007/s11036-014-0555-2.CrossRefGoogle Scholar
  22. Kong, X., Jiang, H., Wang, W., Bekele, T. M., Xu, Z., & Wang, M. (2017). Exploring dynamic research interest and academic influence for scientific collaborator recommendation. Scientometrics,113(1), 369–385.  https://doi.org/10.1007/s11192-017-2485-9.CrossRefGoogle Scholar
  23. Kong, X., Shi, Y., Yu, S., Liu, J., & Xia, F. (2019). Academic social networks: Modeling, analysis, mining and applications. Journal of Network and Computer Applications,132, 86–103.  https://doi.org/10.1016/j.jnca.2019.01.029.CrossRefGoogle Scholar
  24. Kosmulski, M. (2012). The order in the lists of authors in multi-author papers revisited. Journal of Informetrics,6(4), 639–644.  https://doi.org/10.1016/j.joi.2012.06.006.CrossRefGoogle Scholar
  25. Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and its Applications,450, 657–669.  https://doi.org/10.1016/j.physa.2016.01.017.CrossRefGoogle Scholar
  26. Liang, W., Jin, Q., Lu, Z., Wu, M., & Hu, C. (2016). Analyzing of research patterns based on a temporal tracking and assessing model. Personal and Ubiquitous Computing,20(6), 933–946.  https://doi.org/10.1007/s00779-016-0965-1.CrossRefGoogle Scholar
  27. Lin, S., Hong, W., Wang, D., & Li, T. (2017). A survey on expert finding techniques. Journal of Intelligent Information Systems,49(2), 255–279.  https://doi.org/10.1007/s10844-016-0440-5.CrossRefGoogle Scholar
  28. Manger, M. S., Pickup, M. A., & Snijders, T. A. B. (2012). A hierarchy of preferences: A longitudinal network analysis approach to PTA formation. Journal of Conflict Resolution,56(5), 853–878.  https://doi.org/10.1177/0022002712438351.CrossRefGoogle Scholar
  29. Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. New York: Cambridge University Press.CrossRefGoogle Scholar
  30. Meho, L. I. (2019). Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics,13(1), 419–433.  https://doi.org/10.1016/j.joi.2019.02.006.CrossRefGoogle Scholar
  31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Proceedings of the 26th international conference on neural information processing systemsVolume 2 (pp. 3111–3119). http://dl.acm.org/citation.cfm?id=2999792.2999959.
  32. Oliveira, M., Curado, C., & Henriques, P. L. (2018). Knowledge sharing among scientists: A causal configuration analysis. Journal of Business Research.  https://doi.org/10.1016/j.jbusres.2018.12.044.CrossRefGoogle Scholar
  33. Ortega, J. L. (2014). AMiner: Science networking as an information source. In J. L. Ortega (Ed.), Academic search engines (pp. 47–70). Oxford: Chandos Publishing.  https://doi.org/10.1533/9781780634722.47.CrossRefGoogle Scholar
  34. Purwitasari, D., Fatichah, C., Arieshanti, I., & Hayatin, N. (2016). K-medoids algorithm on Indonesian Twitter feeds for clustering trending issue as important terms in news summarization. In Proceedings of 2015 international conference on information and communication technology and systems, ICTS 2015 (pp. 95–98).  https://doi.org/10.1109/ICTS.2015.7379878.
  35. Purwitasari, D., Fatichah, C., Purnama, I. K. E., Sumpeno, S., & Purnomo, M. H. (2017). Inter-departmental research collaboration recommender system based on content filtering in a cold start problem. In 2017 IEEE 10th international workshop on computational intelligence and applications, IWCIA 2017proceedings (Vol. 2017-Decem).  https://doi.org/10.1109/IWCIA.2017.8203581.
  36. Purwitasari, D., Fatichah, C., Sumpeno, S., & Purnomo, M. H. (2018a). Ekstraksi Ciri Produktivitas Dinamis untuk Prediksi Topik Pakar dengan Model Discrete Choice. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 7(4), 418–426.CrossRefGoogle Scholar
  37. Purwitasari, D., Ilmi, A. B., Fatichah, C., Fauzi, W. A., Sumpeno, S., & Purnomo, M. H. (2018b). Conflict of interest based features for expert classification in bibliographic network. In 2018 IEEE international conference on computer engineering, network and intelligent multimedia, CENIM 2018proceedings.Google Scholar
  38. Purwitasari, D., Priantara, I. W. S., Kusmawan, P. Y., Yuhana, U. L., & Siahaan, D. O. (2011). The use of Hartigan index for initializing K-means ++ in detecting similar texts of clustered documents as a plagiarism indicator. Asian Journal of Information Technology,10(8), 341–347.  https://doi.org/10.3923/ajit.2011.341.347.CrossRefGoogle Scholar
  39. Renoust, B., Melançon, G., & Viaud, M.-L. (2014). Entanglement in multiplex networks: Understanding group cohesion in homophily networks. In R. Missaoui & I. Sarr (Eds.), Social network analysis—Community detection and evolution (pp. 89–117). Cham: Springer.  https://doi.org/10.1007/978-3-319-12188-8_5.CrossRefGoogle Scholar
  40. Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the space of topic coherence measures. In Proceedings of the eighth ACM international conference on web search and data mining (pp. 399–408). New York, NY, USA: ACM.  https://doi.org/10.1145/2684822.2685324.
  41. Shibayama, S. (2019). Sustainable development of science and scientists: Academic training in life science labs. Research Policy,48(3), 676–692.  https://doi.org/10.1016/j.respol.2018.10.030.CrossRefGoogle Scholar
  42. Siciliano, M. D., Welch, E. W., & Feeney, M. K. (2018). Network exploration and exploitation: Professional network churn and scientific production. Social Networks,52, 167–179.  https://doi.org/10.1016/j.socnet.2017.07.003.CrossRefGoogle Scholar
  43. Snijders, T. A. B. (2001). The statistical evaluation of social network dynamics. Sociological Methodology,31(1), 361–395.  https://doi.org/10.1111/0081-1750.00099.CrossRefGoogle Scholar
  44. Snijders, T. A. B., Lomi, A., & Torló, V. J. (2013). A model for the multiplex dynamics of two-mode and one-mode networks, with an application to employment preference, friendship, and advice. Social Networks,35(2), 265–276.  https://doi.org/10.1016/j.socnet.2012.05.005.CrossRefGoogle Scholar
  45. Snijders, T. A. B., van de Bunt, G. G., & Steglich, C. E. G. (2010). Introduction to stochastic actor-based models for network dynamics. Social Networks,32(1), 44–60.  https://doi.org/10.1016/j.socnet.2009.02.004.CrossRefGoogle Scholar
  46. Steglich, C., Snijders, T. A. B., & Pearson, M. (2010). Dynamic networks and behavior: Separating selection from influence. Sociological Methodology,40(1), 329–393.  https://doi.org/10.1111/j.1467-9531.2010.01225.x.CrossRefGoogle Scholar
  47. Suominen, A., & Toivanen, H. (2016). Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification. Journal of the Association for Information Science and Technology,67(10), 2464–2476.  https://doi.org/10.1002/asi.23596.CrossRefGoogle Scholar
  48. Tang, J. (2016). AMiner: Toward understanding big scholar data. In Proceedings of the ninth ACM international conference on web search and data mining (p. 467). New York, NY, USA: ACM.  https://doi.org/10.1145/2835776.2835849.
  49. Tang, J., Yao, L., Zhang, D., & Zhang, J. (2010). A combination approach to web user profiling. ACM Transactions on Knowledge Discovery from Data,5(1), 2:1–2:44.  https://doi.org/10.1145/1870096.1870098.CrossRefGoogle Scholar
  50. Tang, J., Zhang, D., & Yao, L. (2007). Social network extraction of academic researchers. In Proceedings of the 2007 seventh IEEE international conference on data mining (pp. 292–301). Washington, DC, USA: IEEE Computer Society.  https://doi.org/10.1109/ICDM.2007.30.
  51. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). ArnetMiner: Extraction and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 990–998). New York, NY, USA: ACM.  https://doi.org/10.1145/1401890.1402008.
  52. Wang, B., Bu, Y., & Huang, W. (2018). Document- and keyword-based author co-citation analysis. Data and Information Management,2(2), 70–82.  https://doi.org/10.2478/dim-2018-0009.CrossRefGoogle Scholar
  53. Wen, L., & Junping, Q. (2014). Semantic information retrieval research based on co-occurrence analysis. Online Information Review,38(1), 4–23.  https://doi.org/10.1108/OIR-11-2012-0203.CrossRefGoogle Scholar
  54. Xia, F., Wang, W., Bekele, T. M., & Liu, H. (2017). Big scholarly data: A survey. IEEE Transactions on Big Data,3(1), 18–35.  https://doi.org/10.1109/TBDATA.2016.2641460.CrossRefGoogle Scholar
  55. Zhu, J., Zhang, J., Zhang, C., Wu, Q., Jia, Y., Zhou, B., et al. (2017). CHRS: Cold start recommendation across multiple heterogeneous information networks. IEEE Access,5, 15283–15299.  https://doi.org/10.1109/ACCESS.2017.2726339.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of Intelligent Electrical and Informatics TechnologyInstitut Teknologi Sepuluh NopemberSurabayaIndonesia
  2. 2.Department of Informatics, Faculty of Intelligent Electrical and Informatics TechnologyInstitut Teknologi Sepuluh NopemberSurabayaIndonesia
  3. 3.Department of Computer Engineering, Faculty of Intelligent Electrical and Informatics TechnologyInstitut Teknologi Sepuluh NopemberSurabayaIndonesia
  4. 4.Department of Sociology, Faculty of Behavioural and Social SciencesUniversity of GroningenGroningenThe Netherlands

Personalised recommendations