Advertisement

Generating process of emerging topics in the life sciences

  • Ryosuke L. OhniwaEmail author
  • Aiko Hibino
Article
  • 4 Downloads

Abstract

Clarifying the mechanism of how emerging topics in science and technology research fields are generated is useful for both researchers and agencies to identify potential emerging topics of the future. In the present study, we use bibliometric analyses targeting data of about 30 million published articles from 1970 to 2017 on PubMed, the largest article database in the life science field, to test our hypothesis that existing emerging topics contribute to the generation of new emerging topics in that field. We first collected emerging keywords from medical subject headings attached to each article using our previously reported methodology (Ohniwa et al. in Scientometrics 85(1):111–127, 2010,  https://doi.org/10.1007/s11192-010-0252-2), and performed co-word analyses of each emerging keyword 1-year prior to it becoming an emerging keyword. About 75% of total emerging keywords, at 1-year prior to becoming identified as emerging, co-appeared with other emerging keywords in the same article. Furthermore, most of the keywords co-appeared again at the point when the target keyword was identified as emerging, which is consistent with our hypothesis regarding the mechanism that emerging topics generate emerging topics.

Keywords

Trends in life science Emerging topics MeSH terms PubMed Metrical index 

Supplementary material

11192_2019_3248_MOESM1_ESM.tif (238 kb)
The networks of the top 50 emerging keywords in 1971–1975. Only keywords that obtain links with other keywords are shown. The labels on the clusters represent the name of topics. The threshold for making edges was set as 10% of the number of keywords (selecting smaller sized nodes) linked by the edges. (TIFF 238 kb)
11192_2019_3248_MOESM2_ESM.tif (203 kb)
The networks of the top 50 emerging keywords in 1976–1980. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 203 kb)
11192_2019_3248_MOESM3_ESM.tif (200 kb)
The networks of the top 50 emerging keywords in 1981–1985. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 200 kb)
11192_2019_3248_MOESM4_ESM.tif (349 kb)
The networks of the top 50 emerging keywords in 1986–1990. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 348 kb)
11192_2019_3248_MOESM5_ESM.tif (330 kb)
The networks of the top 50 emerging keywords in 1991–1995. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 330 kb)
11192_2019_3248_MOESM6_ESM.tif (312 kb)
The networks of the top 50 emerging keywords in 1996–2000. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 312 kb)
11192_2019_3248_MOESM7_ESM.tif (259 kb)
The networks of the top 50 emerging keywords in 2001–2005. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 258 kb)
11192_2019_3248_MOESM8_ESM.tif (229 kb)
The networks of the top 50 emerging keywords in 2006–2010. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 229 kb)
11192_2019_3248_MOESM9_ESM.tif (235 kb)
The networks of the top 50 emerging keywords in 2010–2015. See Supplemental Figure 1 legend for the conditions of links and labels. (TIFF 235 kb)

References

  1. Batagelj, V., & Mrvar, A. (2002). Pajek—Analysis and visualization of large networks. Graph Drawing, 2265, 477–478.CrossRefGoogle Scholar
  2. Borup, M., Brown, N., Konrad, K., & Van Lente, H. (2006). The sociology of expectations in science and technology. Technology Analysis & Strategic Management, 18(3–4), 285–298.  https://doi.org/10.1080/09537320600777002.CrossRefGoogle Scholar
  3. Cozzens, S. E., Gatchair, S., Kang, J., Kim, K.-S., Lee, H. J., Ordónez, G., et al. (2010). Emerging technologies: Quantitative identification and measurement. Technology Analysis & Strategic Management, 22(3), 361–376.CrossRefGoogle Scholar
  4. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.  https://doi.org/10.1016/j.techfore.2006.04.004.CrossRefGoogle Scholar
  5. Furukawa, T., Mori, K., Arino, K., Hayashi, K., & Shirakawa, N. (2015). Identifying the evolutionary process of emerging technologies: A chronological network analysis of World Wide Web conference sessions. Technological Forecasting and Social Change, 91, 280–294.  https://doi.org/10.1016/j.techfore.2014.03.013.CrossRefGoogle Scholar
  6. Glanzel, W., & Thijs, B. (2012). Using ‘core documents’ for detecting and labelling new emerging topics. Scientometrics, 91(2), 399–416.  https://doi.org/10.1007/s11192-011-0591-7.CrossRefGoogle Scholar
  7. Guo, H. N., Weingart, S., & Borner, K. (2011). Mixed-indicators model for identifying emerging research areas. Scientometrics, 89(1), 421–435.  https://doi.org/10.1007/s11192-011-0433-7.CrossRefGoogle Scholar
  8. Jang, H. J., Woo, H. G., & Lee, C. (2017). Hawkes process-based technology impact analysis. Journal of Informetrics, 11(2), 511–529.  https://doi.org/10.1016/j.joi.2017.03.007.CrossRefGoogle Scholar
  9. Lee, C., Kim, J., Kwon, O., & Woo, H. G. (2016). Stochastic technology life cycle analysis using multiple patent indicators. Technological Forecasting and Social Change, 106, 53–64.  https://doi.org/10.1016/j.techfore.2016.01.024.CrossRefGoogle Scholar
  10. Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291–303.  https://doi.org/10.1016/j.techfore.2017.10.002.CrossRefGoogle Scholar
  11. Lee, H. J., Lee, S., & Yoon, B. (2011). Technology clustering based on evolutionary patterns: The case of information and communications technologies. Technological Forecasting and Social Change, 78(6), 953–967.  https://doi.org/10.1016/j.techfore.2011.02.002.CrossRefGoogle Scholar
  12. Leydesdorff, L., Rotolo, D., & Rafols, I. (2012). Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed. Journal of the American Society for Information Science and Technology, 63(11), 2239–2253.  https://doi.org/10.1002/asi.22715.CrossRefGoogle Scholar
  13. Lowe, H. J., & Barnett, G. O. (1994). Understanding and using the medical subject-headings (Mesh) vocabulary to perform literature searches. Journal of the American Medical Association, 271(14), 1103–1108.  https://doi.org/10.1001/jama.271.14.1103.CrossRefGoogle Scholar
  14. Morris, S. A., Yen, G., Wu, Z., & Asnake, B. (2003). Time line visualization of research fronts. Journal of the American Society for Information Science and Technology, 54(5), 413–422.  https://doi.org/10.1002/asi.10227.CrossRefGoogle Scholar
  15. Ohniwa, R. L., Hibino, A., & Takeyasu, K. (2010). Trends in research foci in life science fields over the last 30 years monitored by emerging topics. Scientometrics, 85(1), 111–127.  https://doi.org/10.1007/s11192-010-0252-2.CrossRefGoogle Scholar
  16. Petersen, A. M., Rotolo, D., & Leydesdorff, L. (2016). A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of medical subject headings. Research Policy, 45(3), 666–681.  https://doi.org/10.1016/j.respol.2015.12.004.CrossRefGoogle Scholar
  17. Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843.  https://doi.org/10.1016/j.respol.2015.06.006.CrossRefGoogle Scholar
  18. Shibata, N., Kajikawa, Y., Takeda, Y., Sakata, I., & Matsushima, K. (2011). Detecting emerging research fronts in regenerative medicine by the citation network analysis of scientific publications. Technological Forecasting and Social Change, 78(2), 274–282.  https://doi.org/10.1016/j.techfore.2010.07.006.CrossRefGoogle Scholar
  19. Shin, J., Coh, B. Y., & Lee, C. (2013). Robust future-oriented technology portfolios: Black–Litterman approach. R&D Management, 43(5), 409–419.  https://doi.org/10.1111/radm.12022.CrossRefGoogle Scholar
  20. Small, H., Boyack, K. W., & Klavans, R. (2014). Identifying emerging topics in science and technology. Research Policy, 43(8), 1450–1467.  https://doi.org/10.1016/j.respol.2014.02.005.CrossRefGoogle Scholar
  21. van Lente, H., & Rip, A. (1998). The rise of membrane technology: From rhetorics to social reality. Social Studies of Science, 28(2), 221–254.  https://doi.org/10.1177/030631298028002002.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Faculty of MedicineUniversity of TsukubaTsukubaJapan
  2. 2.Center for BiotechnologyNational Taiwan UniversityTaipeiTaiwan
  3. 3.Faculty of Humanities and Social SciencesHirosaki UniversityHirosakiJapan

Personalised recommendations