Advertisement

Research infrastructures in less developed countries: the Brazilian case

  • Thiago Caliari
  • Márcia Siqueira Rapini
  • Tulio ChiariniEmail author
Article
  • 12 Downloads

Abstract

High quality research infrastructure is required to conduct S&T activities which may help to address national challenges and contribute to innovation processes. Given this, an exhaustive survey conducted by the Brazilian Institute of Applied Economic Research (Instituto de Pesquisa Econômica Aplicada) was undertaken to diagnose the current research infrastructure situation in Brazil. Using this data, the present paper provides information that allows us to yield new insights based on the peculiarities of the research infrastructure in Brazil, complementing the studies already present in the literature. Two econometric models—logit and probit—were used to “measure” the relative modernity of the research infrastructure in the country. We test the impact of variables frequently present in innovation studies—lab size, S&T production scale and scope, lab longevity and interactions with other labs and profit-seeking firms. We found that scaling up, modernizing and interacting with other agents of the innovation system increase the chances of a research infrastructure to be considered “advanced”.

Keywords

Research infrastructure Innovation system S&T public policy Brazil 

Notes

Acknowledgments

The opinions expressed herein are those of the authors alone. They do not necessarily reflect the views of, or involve any responsibility on the part of, the institutions to which the authors are affiliated. Very early versions of this article were presented at the XVIII Congreso Latino-Iberoamericano de Gestión Tecnológica (ALTEC), Medellin (Colombia) and at the IV Encontro Nacional de Economia Industrial e Inovação (ENEI), Campinas (Brazil). Authors would like to thank Instituto de Pesquisa Econômica Aplicada (IPEA) for making available the data from the survey regarding the research infrastructure in Brazil.

References

  1. Acharya, T. (2007). Science and technology for wealth and health in developing countries. Global Public Health,2(1), 53–63.CrossRefGoogle Scholar
  2. Albuquerque, E., Simoes, R., Baessa, A., Campolina, B., & Silva, L. (2002). A distribuição da produção científica e tecnológica brasileira: uma descrição de estatística de produção local de patentes e artigos científicos. Revista Brasileira de Inovação,1, 225–251.CrossRefGoogle Scholar
  3. Barufi, A. M. B. (2014). Impactos do Acesso ao Ensino Superior sobre a Migração de Estudantes Universitários. In G. M. Resende (Ed.), Avaliação de Políticas Públicas no Brasil uma análise de seus impactos regionais (1st ed., Vol. 1, pp. 307–352). IPEA: Brasília.Google Scholar
  4. Bernardes, A. T., & Albuquerque, E. M. (2003). Cross-over, thresholds, and interactions between science and technology: Lessons for less-developed countries. Research Policy,32, 865–885.CrossRefGoogle Scholar
  5. Brasil. (2015). Ministério da educação. A democratização e expansão da educação superior no Brasil: 20032014. [S.l: s.n.].Google Scholar
  6. Brooks, H. (1994). The relationship between science and technology. Research Policy,23, 477–486.CrossRefGoogle Scholar
  7. Caliari, T., dos Santos, U. P., & Mendes, P. S. (2016). Geração de Tecnologia em Universidades/Institutos de Pesquisa e a Importância da Interação com Empresas: Constatações através da Base de Dados dos Grupos de Pesquisa do CNPq. Análise Econômica,34(66), 285–312.CrossRefGoogle Scholar
  8. Caliari, T., & Rapini, M. S. (2017). Geographical distance differentials in university-firm interaction in Brazil: A focus on the characteristics of agents and interactions. Nova Economia,27(1), 271–302.CrossRefGoogle Scholar
  9. Carvalho, L. (2018). A valsa brasileira. São Paulo: Todavia Livros.Google Scholar
  10. Cassiolato, J. E., & Soares, M. C. C. (2015). Innovation systems, development and health. In: Cassiolato, J. E., Soares, M. C. (Eds.), Health innovation systems, equity and development.Google Scholar
  11. Cavalcante, L. R. (2011). Desigualdades Regionais em Ciência, Tecnologia e Inovação no Brasil: Uma Análise de sua Evolução Recente., Texto para Discussão., no 1574. Brasília: [s.n.].Google Scholar
  12. Chandler, A. (1994). Scale and scope: The dynamic of industrial capitalism. Cambridge, MA: The Belknapp Press of the Harvard University Press.Google Scholar
  13. Chiarini, T., Oliveira, V. P., & Do Couto E Silva Neto, F. C. (2013). Spatial distribution of scientific activities: An exploratory analysis of Brazil, 2000–10. Science and Public Policy,41, 625–640.CrossRefGoogle Scholar
  14. Cockburn, I. M., & Henderson, R. M. (2001). Scale and scope in drug development: Unpacking the advantages of size in pharmaceutical research. Journal of Health Economics,20, 1033–1057.CrossRefGoogle Scholar
  15. Cohen, J. E. (1980). Publication rate as a function of laboratory size in a biomedical research institution. Scientometrics,2(1), 35–52.CrossRefGoogle Scholar
  16. Cohen, J. E. (1991). Size, age and productivity of scientific and technical research groups. Scientometrics,20(3), 395–416.CrossRefGoogle Scholar
  17. Cohen, W. M., et al. (2002). Links and impacts: The influence of public research on industrial R&D. Management Science,48(1), 1–23.MathSciNetCrossRefGoogle Scholar
  18. Cooke, P. (2001). Regional innovation systems, clusters, and the knowledge economy. Industrial and Corporate Change,10(4), 945–974.MathSciNetCrossRefGoogle Scholar
  19. Crow, M., & Bozeman, B. (1998). Limited by design: R&D Laboratories in the US national innovation system. New York: Columbia University Press.Google Scholar
  20. D’Ippolito, B., & Rülling, C.-C. (2019). Research collaboration in large scale research infrastructures: Collaboration types and policy implications. Research Policy,48, 1282–1296.CrossRefGoogle Scholar
  21. De Negri, F., Cavalcante, L. R., & Alves, P. F. (2013). Relações universidade-empresa no Brasil: o papel da infraestrutura pública de pesquisa. Discussing paper, n. 1901. Brasília: IPEA.Google Scholar
  22. De Negri, F., & De Squeff, F. H. S. (2016). Sistemas setoriais de inovação e infraestrutura de pesquisa no Brasil (1st ed.). Brasília: IPEA.Google Scholar
  23. Del Bo, C. F., Florio, M., & Forte, S. (2016). The social impact of research infrastructures at the frontier of science and technology: The case of particle accelerators. Technological Forecasting and Social Change,112, 1–3.CrossRefGoogle Scholar
  24. European Commission (EC). (2010). A vision for strengthening world-class research infrastructures in the ERA. Report of the expert group on research infrastructures. Brussels: European Commission.Google Scholar
  25. Europena Strategy Forum on Research Infrastructures (ESFRI). (2018). Innovation-oriented cooperation of research infrastructures. Milan: Università degli Studi di Milano.Google Scholar
  26. Fagundes, M. E. M., Cavalcante, L. R. M. T., & Ramacciotti, R. E. L. (2005). Distribuição regional dos fluxos de recursos federais para ciência e tecnologia. Parcerias Estratégicas,10(21), 59–78.Google Scholar
  27. Florida, R. (1995). Toward the learning region. Futures,27(5), 527–536.CrossRefGoogle Scholar
  28. Foray, D. (2004). The economic of knowledge. Cambridge: MIT Press.CrossRefGoogle Scholar
  29. Foray, D. (2010). Knowledge policy for development. In E. Kraemer-Mbula & W. Wamae (Eds.), Innovation and the development agenda (pp. 91–109). Ottawa: OECD Publishing.Google Scholar
  30. Freeman, C. (1992). Economics of innovation. London: Routledge.Google Scholar
  31. Freeman, C. (2004). Technological infrastructure and international competitiveness. Industrial and Corporate Change,13(3), 541–569.CrossRefGoogle Scholar
  32. Guimarães, R. (2002). Pesquisa no Brasil: A reforma tardia. São Paulo em Perspectiva,16(4), 41–72.CrossRefGoogle Scholar
  33. Hernandez-Villafuerte, K., et al. (2017). Economies of scale and scope in publicly funded biomedical and health research: Evidence from the literature. Health Research Policy and Systems,15(3), 1–17.Google Scholar
  34. Johnes, J., & Johnes, G. (2016). Costs, efficiency and economies of scale and scope in the english higher education sector [S.l: s.n.].Google Scholar
  35. Kannebley, S., De Borges, R. L. A., & De Prince, D. (2018). Scientific production and its collective determinants: An econometric analysis for the Brazilian research labs. Science and Public Policy,45(5), 661–672.CrossRefGoogle Scholar
  36. Kim, L. (1997). Imitation to innovation: The dynamics of Korea’s technological learning. Brighton: Harvard Business School Press.Google Scholar
  37. Klevorick, A. K., et al. (1995). On the sources and significance of interindustry differences in technological opportunities. Research Policy,24, 185–205.CrossRefGoogle Scholar
  38. Kline, S. J., & Rosenberg, N. (1986). An overview of innovation. European Journal of Innovation Management,38, 275–305.Google Scholar
  39. Koshal, R. K., & Koshal, M. (1999). Economies of scale and scope in higher education: A case of comprehensive universities. Economics of Education Review,18, 269–277.CrossRefGoogle Scholar
  40. Lee, K. (2019). The art of economic catch-up. Barriers, detours and leapfrogging in Innovation Systems. New York: Cambridge University Press.CrossRefGoogle Scholar
  41. Lozano, S., Rodríguez, X.-P., & Arenas, A. (2014). Atapuerca: Evolution of scientific collaboration in an emergent large-scale research infrastructure. Scientometrics,98, 1505–1520.CrossRefGoogle Scholar
  42. Lundvall, B.-A. (1992) National systems of innovation. Towards a theory of innovation and interactive learning. London: Pinter Publisher.Google Scholar
  43. Lundvall, B.-A., Joseph, K. J., Chaminade, C., & Vang, J. (Eds.). (2009). Handbook of innovation systems and developing countries: building domestic capabilities in a global setting. Cheltenham: Edward Elgar.Google Scholar
  44. Maculan, A. M., & Mello, J. M. C. (2009). University start-ups for breaking lock-ins of the Brazilian economy. Science and Public Policy,36(2), 109–114.CrossRefGoogle Scholar
  45. Mansfield, E. (1991). Academic research and industrial innovation. Research Policy,20, 1–12.CrossRefGoogle Scholar
  46. Mazzoleni, R., & Nelson, R. (2005). The roles of research at universities and public labs in economic catch up. Pisa: Laboratory of Economics and Management, Sant’Anna School of Advanced Studies.Google Scholar
  47. Mello, J. M. C., Maculan , A. M., & Renault, T. (2009). Brazilian universities and their contribution to innovation and development. In Bo goransson; claes brundenius. (Org.). developing universities: The changing role of academic institutions in development (Vol. 2009, pp. 1–25). Londres: Routledge/IDRC.Google Scholar
  48. Myrdal, G. (1960) Teoria econômica e regiões subdesenvolvidas. Edição Or ed. Belo Horizonte: Editora UFMG.Google Scholar
  49. Nelson, R. (1993). National innovation systems: A comparative analysis. New York: Oxford University Press.Google Scholar
  50. OECD. (2010). Establishing large international research infrastructures: Issues and options. Report of the Global Science Forum.Google Scholar
  51. Olivares, M., & Wetzel, H. (2011). Competing in the higher education market: Empirical evidence for economies of scale and scope in German higher education institutions. University of Lüneburg working paper series in economics, no. 223. Lüneburg: [s.n.].Google Scholar
  52. Pavitt, K. (1991). What makes basic research economically useful. Research Police,20, 109–119.CrossRefGoogle Scholar
  53. Perez, C., & Soete, L. (1988). Catching up in technology: Entry barriers and windows of opportunity. In G. Dosi, et al. (Eds.), Technical change and economic theory (pp. 458–479). London: Francis Pinter.Google Scholar
  54. Pires, A. C., & Silva, M. C. P. (2009). Políticas de Regionalização da Capes: Limites e Potencialidades para a história da educação superior no Norte e Nordeste do Brasil. 2009, Uberlândia: [s.n.].Google Scholar
  55. Qiao, L., Mu, R., & Chen, K. (2016). Scientific effects of large research infrastructures in China. Technological Forecasting and Social Change,112, 102–112.CrossRefGoogle Scholar
  56. Qurashi, M. M. (1984). Publication rate as a function of the laboratory/group size. Scientometrics,6(1), 19–26.CrossRefGoogle Scholar
  57. Rapini, M. S. (2007). Interação Universidade-Empresa no Brasil: Evidências do Diretório dos Grupos de Pesquisa do CNPq. Estudos Econômicos,37(1), 211–233.Google Scholar
  58. Rapini, M. S., Chiarini, T., & Bittencourt, P. F. (2015). University-firm interactions in Brazil: beyond human resources and training missions. Industry and Higher Education,29(2), 11–127.CrossRefGoogle Scholar
  59. Ribeiro, L. C., Ruiz, R. M., Bernardes, A. T., & Albuquerque, E. M. (2010). Modeling economic growth fuelled by science and technology. Estudos Econômicos,40(2), 319–340.Google Scholar
  60. Ritter, F. E., & Schooler, L. J. (2002). The learning curve. International encyclopedia of the social and behavioral sciences (pp. 8602–8605). Amsterdam: Pergamon.Google Scholar
  61. Rosenberg, N. (1976). Perspectives on technology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Rosenberg, N. (1982). Inside the black box: Technology and economics. Cambridge University Press.Google Scholar
  63. Salter, A., & Martin, B. (2001). The economic benefits of publicly funded basic research: A critical review. Research Policy,30, 509–532.CrossRefGoogle Scholar
  64. Santos, U. P., & Caliari, T. (2012). Distribuição Espacial das Estruturas de Apoio às Atividades Tecnológicas no Brasil: Uma Análise Multivariada para as Cinquenta Maiores Microrregiões do País. Revista Economia (ANPEC),13(3b), 759–783.Google Scholar
  65. Schwartzman, S. (1991). A space for science. The development of the scientific community in Brazil. Pennsylvania: The Pennsylvania State University Press.Google Scholar
  66. Sidone, O. J. G., Haddad, E. A., & Mena-Chalco, J. P. (2016). A ciência nas regiões brasileiras: evolução da produção e das redes de colaboração. Transinformação,28(1), 15–31.CrossRefGoogle Scholar
  67. Silva Neto, F. C. C., et al. (2013). Patterns of interaction between national and multinational corporations and Brazilian universities/public research institutes. Science and Public Policy,40, 281–292.CrossRefGoogle Scholar
  68. Sjoo, K., & Hellstrom, T. (2019). University-industry collaboration: A literature review and synthesis. Industry and Higher Education,33, 275–285.CrossRefGoogle Scholar
  69. Stephan, P. (2010). The economics of science. In B. Hall & N. Rosenberg (Eds.), Handbook of economics of innovation (Vol. 1, pp. 218–273). Amsterdam: Elsevier.Google Scholar
  70. Suzigan, W., & Albuquerque, E. (2011). The underestimated role of universities for the Brazilian system of innovation. Revista de Economia Política,31(401666), 3–30.Google Scholar
  71. Vonortas, N. S. (2009). Scale and scope in research. In H. Delanghe, U. Muldur, & L. Soete (Eds.), European science and technology policy: Towards integration or fragmentation? (pp. 142–158). Cheltenham: Edward Elgar.Google Scholar
  72. Vonortas, N., et al. (2011). Economies of scale and scope at the research project level. Luxembourg: [s.n.].Google Scholar
  73. Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. Cambridge: MIT Press.zbMATHGoogle Scholar
  74. Wright, M., Birley, S., & Mosey, S. (2004). Entrepreneurship and university technology transfer. Journal of Technology Transfer,29, 235–246.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Instituto Tecnológico de Aeronáutica (ITA)São José dos CamposBrazil
  2. 2.Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Instituto Nacional de Tecnologia (INT)Rio de JaneiroBrazil

Personalised recommendations