Territorial innovation models: to be or not to be, that’s the question

  • David Doloreux
  • Jose Gaviria de la Puerta
  • Iker Pastor-López
  • Igone Porto GómezEmail author
  • Borja Sanz
  • Jon Mikel Zabala-Iturriagagoitia


Industrial agglomerations are key in explaining the development paths followed by territories, particularly at sub-national levels. This field of research has received increasing attention in the last decades, what has led to the emergence of a variety of models intended to characterize innovation at the regional level. Moulaert and Sekia (Reg Stud 37:289–302, 2003) introduced the concept of ‘Territorial Innovation Models’ (TIMs) as a generic name that embraced these conceptual models of regional innovation in the literature. However, the literature does not help to assess the extent to which convergence or divergence is found across TIMs. In this paper we aim to clarify if there are clear boundaries across TIMs, so each TIM has particular characteristics that make it conceptually different from others, and hence, justify its introduction in the literature. Based on natural language processing methodologies, we extract the key terms of a large volume of academic papers published in peer review journals indexed in the Web of Science for the following TIMS: industrial districts, innovative milieu, learning regions, clusters, regional innovation systems, local production systems and new industrial spaces. We resort to Rapid Automatic Keyword Extraction to identify the associations between the topics extracted from the previous corpus. Finally, a configuration to visualise the results of the methodology followed is also proposed. Our results evidence that the previous models do not have a unique flavour but are rather similar in their taste. We evidence that there is quite little that is truly new in the different TIMs in terms of theory-building and the concepts being used in each model.


Territorial innovation models Bibliometric analysis Natural language processing Regional development 



The funding was provided by Eusko Jaurlaritza (Grand No. IT885-16) and H2020 Societal Challenges (Grand No. H2020-700367).


  1. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM sigmod record (Vol. 22, No. 2, pp. 207–216). ACM, New York.Google Scholar
  2. Amara, N., & Landry, R. (2012). Counting citations in the field of business and management: Why use Google Scholar rather than the Web of Science. Scientometrics, 93(3), 553–581.Google Scholar
  3. Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing bibliometric statistics obtained from the Web of Science and Scopus. Journal of the American Society for Information Science and Technology, 60(7), 1320–1326.Google Scholar
  4. Archambault, É., Vignola-Gagné, É., Côté, G., Larivire, V., & Gingrasb, Y. (2006). Benchmarking scientific output in the social sciences and humanities: The limits of existing databases. Scientometrics, 68(3), 329–342.Google Scholar
  5. Asheim, B. T., Boschma, R., & Cooke, P. (2011). Constructing regional advantage: Platform policies based on related variety and differentiated knowledge bases. Regional Studies, 45(7), 893–904.Google Scholar
  6. Asheim, B. T., & Gertler, M. S. (2005). The geography of innovation: Regional innovation systems. In J. Fagerberg, D. Mowery, & R. Nelson (Eds.), The Oxford handbook of innovation (pp. 291–317). Oxford: Oxford University Press.Google Scholar
  7. Asheim, B. T., Grillitsch, M., & Trippl, M. (2016). Regional innovation systems: Past–present–future. In R. Shearmur, C. Carrincazeaux, & D. Doloreux (Eds.), Handbook on the geographies of innovations (pp. 45–62). Cheltenham: Edward Elgar.Google Scholar
  8. Barrutia, J., & Zabala-Iturriagagoitia, J. M. (2018). Towards an epigenetics understanding of evolutionary economic geography. Evolutionary and Institutional Economics Review, 15(2), 213–241.Google Scholar
  9. Becattini, G. (1979). Dal ‘settore’ industriale al ‘distretto’ industriale. Alcune considerazioni sull’unità d’indagine dell’economia industriale. Rivista di Economia e Politica Industriale, 5(1), 7–21.Google Scholar
  10. Becattini, G., Bellandi, M., & De Propis, L. (2009). A handbook of industrial districts. Cheltenham: Edward Elgar.Google Scholar
  11. Bergman, E. M. L. (2012). Finding citations to social work literature: The relative benefits of using Web of Science, Scopus, or Google Scholar. The Journal of Academic Librarianship, 38(6), 370–379.Google Scholar
  12. Borgelt, C. (2005). An implementation of the FP-growth algorithm. In Proceedings of the 1st international workshop on open source data mining: Frequent pattern mining implementations (pp. 1–5). Chicago, Illinois, August 21, 2005, ACM (Association for Computing Machinery).Google Scholar
  13. Bornmann, L., Haunschild, R., & Hug, S. E. (2018). Visualizing the context of citations referencing papers published by Eugene Garfield: A new type of keyword co-occurrence analysis. Scientometrics, 114, 427–437.Google Scholar
  14. Boschma, R. A., & Ter Wal, A. L. (2007). Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the South of Italy. Industry and Innovation, 14(2), 177–199.Google Scholar
  15. Cainelli, G. (2008). Spatial agglomeration, technological innovations, and firm productivity: Evidence from Italian industrial districts. Growth and Change, 39(3), 414–435.Google Scholar
  16. Chavarro, D., Rafols, I., & Tang, P. (2018). To what extent is inclusion in the Web of Science an indicator of journal ‘quality’? Research Evaluation, 27(2), 106–118.Google Scholar
  17. Chen, B., Tsutsui, S., Ding, Y., & Ma, F. (2017). Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. Journal of Informetrics, 11(4), 1175–1189.Google Scholar
  18. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630.Google Scholar
  19. Cooke, P., Uranga, M. G., & Etxebarria, G. (1997). Regional innovation systems: Institutional and organisational dimensions. Research Policy, 26(4–5), 475–491.Google Scholar
  20. Courlet, C., & Soulage, B. (1994). Dynamiques industrielles et territoire. In G. Garofoli & A. Vázquez-Barquero (Eds.), Organization of production and territory: Local models of development (pp. 45–91). Pavia: Gianni Luculano.Google Scholar
  21. Crescenzi, R., & Rodríguez-Pose, A. (2011). Reconciling top-down and bottom-up development policies. Environment and Planning A, 43(4), 773–780.Google Scholar
  22. Crevoisier, O. (2004). The innovative milieus approach: Toward a territorialized understanding of the economy? Economic Geography, 80(4), 367–379.Google Scholar
  23. Cruz, S. C., & Teixeira, A. A. (2010). The evolution of the cluster literature: Shedding light on the regional studies–regional science debate. Regional Studies, 44(9), 1263–1288.Google Scholar
  24. De Marchi, V., & Grandinetti, R. (2014). Industrial districts and the collapse of the Marshallian model: Looking at the Italian experience. Competition & Change, 18(1), 70–87.Google Scholar
  25. Doloreux, D., & Porto Gómez, I. (2017). A review of (almost) 20 years of regional innovation systems research. European Planning Studies, 25(3), 371–387.Google Scholar
  26. Dotti, N. F. (2014). Literature review on territorial innovation models, geography of research and policy innovations. GREATPI working paper no 1. Cosmopolis, centre for urban research, Department of Geography, Vrije Universiteit, Brussel.Google Scholar
  27. Elgaml, E. M., Ibrahim, D. M., & Sallam, E. A. (2015). Improved FP-growth algorithm with multiple minimum supports using maximum constraints. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 9(5), 1087–1094.Google Scholar
  28. Enkel, E., Gassmann, O., & Chesbrough, H. (2009). Open R&D and open innovation: Exploring the phenomenon. R&D Management, 39(4), 311–316.Google Scholar
  29. Fang, L. (2015). Do clusters encourage innovation? A meta-analysis. Journal of Planning Literature, 30(3), 239–260.Google Scholar
  30. Florida, R. (1995). Towards the learning region. Futures, 27(5), 527–536.Google Scholar
  31. García-Lillo, F., Claver-Cortés, E., Marco-Lajara, B., Úbeda-García, M., & Seva-Larrosa, P. (2017). On clusters and industrial districts: A literature review using bibliometrics methods, 2000–2015. Papers in Regional Science, 97(4), 835–861.Google Scholar
  32. Hahsler, M., & Chelluboina, S. (2011). Visualizing association rules: Introduction to the R-extension package arulesViz. R Project Module, 6, 223–238.Google Scholar
  33. Hart, C. (2014). Doing a literature review. Releasing the social science research imagination (8th ed.). London: SAGE Publications Ltd.Google Scholar
  34. Hassink, R. (2005). How to unlock regional economies from path dependency? From learning region to learning cluster. European Planning Studies, 13(4), 521–535.Google Scholar
  35. Henry, N., Pinch, S., & Russell, S. (1996). In pole position? Untraded interdependencies, new industrial spaces and the British motorsport industry. Area, 28(1), 25–36.Google Scholar
  36. Hervas-Oliver, J. L., Gonzalez, G., Caja, P., & Sempere-Ripoll, F. (2015). Clusters and industrial districts: Where is the literature going? Identifying emerging sub-fields of research. European Planning Studies, 23(9), 1827–1872.Google Scholar
  37. Hong, S., Huaxuan, Z., Shiping, C., & Chunyan, H. (2013). The study of improved FP-growth algorithm in MapReduce. In Proceedings of the the 1st international workshop on cloud computing and information security (pp. 250–253) Nov 9–11, 2013, Shangai, China.Google Scholar
  38. Horváth, K., & Rabetino, R. (2019). Knowledge-intensive territorial servitization: Regional driving forces and the role of the entrepreneurial ecosystem. Regional Studies, 53(3), 330–340.Google Scholar
  39. Isaksen, A. (1996). Towards increased regional specialisation? The quantitative importance of new industrial spaces in Norway, 1970–1990. Norsk Geografisk Tidsskrift, 50, 113–123.Google Scholar
  40. Isaksen, A. (2009). Innovation dynamics of global competitive regional clusters: The case of the Norwegian centres of expertise. Regional Studies, 43(9), 1155–1166.Google Scholar
  41. Isaksen, A., & Trippl, M. (2017). Exogenously led and policy-supported new path development in peripheral regions: Analytical and synthetic routes. Economic Geography, 93(5), 436–457.Google Scholar
  42. Jesson, J. K., Matheson, L., & Lacey, F. M. (2011). Doing your literature review. Traditional and systematic techniques. London: SAGE Publications Ltd.Google Scholar
  43. Lee, P. C., & Su, H. N. (2010). Investigating the structure of regional innovation system research through keyword co-occurrence and social network analysis. Innovation, 12(1), 26–40.Google Scholar
  44. Liu, Z., Yin, Y., Liu, W., & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics, 103(1), 135–158.Google Scholar
  45. Lounsbury, J. W., Roisum, K. G., Pokorny, L., Sills, A., & Meissen, G. J. (1979). An analysis of topic areas and topic trends in theCommunity Mental Health Journal from 1965 through 1977. Community Mental Health Journal, 15(4), 267–276.Google Scholar
  46. Lundvall, B.-A. (1988). Innovation as an interactive process: From user–producer interaction to the national system of innovation. In G. Dosi, C. Freeman, R. Nelson, G. Silverberg, & L. Soete (Eds.), Technical change and economic theory (pp. 349–369). London: Pinter.Google Scholar
  47. Maillat, D. (1998). From the industrial district to the innovative milieu: Contribution to an analysis of territorialised productive organisations. Recherches Économiques de Louvain/Louvain Economic Review, 64(1), 111–129.Google Scholar
  48. Markusen, A. (2003). Fuzzy concepts, scanty evidence, policy distance: The case for rigour and policy relevance in critical regional studies. Regional Studies, 37, 701–717.Google Scholar
  49. Marshall, A. (1890). Principles of economics. London: MacMillan.zbMATHGoogle Scholar
  50. Marshall, A. (1919). Industry and trade. London: Macmillan.Google Scholar
  51. Mazzucato, M., & Robinson, D. K. R. (2018). Co-creating and directing Innovation Ecosystems? NASA’s changing approach to public-private partnerships in low-earth orbit. Technological Forecasting and Social Change, 136, 166–177.Google Scholar
  52. Miettinen, R. (2002). National innovation system: Scientific concept or political rhetoric. Helsinki: Edita Prima Ltd.Google Scholar
  53. Morgan, K. (1997). The learning region: Institutions, innovation and regional renewal. Regional Studies, 31, 491–503.Google Scholar
  54. Moulaert, F., & Nussbaumer, J. (2005). The social region: Beyond the territorial dynamics of the learning economy. European Urban and Regional Studies, 12(1), 45–64.Google Scholar
  55. Moulaert, F., & Sekia, F. (2003). Territorial innovation models: A critical survey. Regional Studies, 37, 289–302.Google Scholar
  56. Muscio, A. (2006). From regional innovation systems to local innovation systems: Evidence from Italian industrial districts. European Planning Studies, 14(6), 773–789.Google Scholar
  57. O’Gorman, C., & Kautonen, M. (2004). Policies to promote new knowledge-intensive industrial agglomerations. Entrepreneurship & Regional Development, 16(6), 459–479.Google Scholar
  58. Olsen, L. S. (2012). Territorial knowledge dynamics: Making a difference to territorial innovation models and public policy? European Planning Studies, 20(11), 1785–1801.Google Scholar
  59. Onan, A., Korukoğlu, S., & Bulut, H. (2016). Ensemble of keyword extraction methods and classifiers in text classification. Expert Systems with Applications, 57, 232–247.Google Scholar
  60. Ortega-Colomer, F. J., Molina-Morales, F. X., & Fernández de Lucio, I. (2016). Discussing the concepts of cluster and industrial district. Journal of Technology Management & Innovation, 11(2), 139–147.Google Scholar
  61. Piore, M., & Sabel, C. (1984). The second industrial divide: Possibilities for prosperity. New York: Basic Books.Google Scholar
  62. Porter, M. E. (1990). The competitive advantage of nations. New York: Free Press.Google Scholar
  63. Porter, M. E. (2000). Location, competition, and economic development: Local clusters in a global economy. Economic Development Quarterly, 14(1), 15–20.Google Scholar
  64. Porter, M. E. (2008). Clusters, innovation, and competitiveness. In EU conference on innovation and clusters, Stockholm.Google Scholar
  65. Porto Gómez, I. (2014). ROSIS: Un Sistema Regional Sectorial y Abierto para la innovación en la comarca del Duranguesado. PhD dissertation. Bilbao: University of the Basque Country.Google Scholar
  66. Porto Gómez, I., Otegi Olaso, J. R., & Zabala-Iturriagagoitia, J. M. (2016). ROSA, ROSAE, ROSIS: Modelling a regional open sectoral innovation system. Entrepreneurship & Regional Development, 28(1–2), 26–50.Google Scholar
  67. Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from individual documents. Text Mining: Applications and Theory, 1, 1–20.Google Scholar
  68. Santos, I., de-la-Peña-Sordo, J., Pastor-López, I., Galán-García, P., & Bringas, P. G. (2012). Automatic categorisation of comments in social news websites. Expert Systems with Applications, 39, 13417–13425.Google Scholar
  69. Scaringella, L., & Chanaron, J. J. (2016). Grenoble–GIANT territorial innovation models: Are investments in research infrastructures worthwhile? Technological Forecasting and Social Change, 112, 92–101.Google Scholar
  70. Scaringella, L., & Radziwon, A. (2018). Innovation, entrepreneurial, knowledge, and business ecosystems: Old wine in new bottles? Technological Forecasting and Social Change, 136, 59–87.Google Scholar
  71. Schot, J., & Steinmueller, W. E. (2018). Three frames for innovation policy: R&D, systems of innovation and transformative change. Research Policy, 47(9), 1554–1567.Google Scholar
  72. Scott, A. J. (1988). Flexible production systems and regional development: The rise of new industrial spaces in North America and Western Europe. International Journal of Urban and Regional Research, 12(2), 171–186.Google Scholar
  73. Storper, M., & Scott, A. J. (1988). The geographical foundations and social regulation of flexible production complexes. In J. Wolch & M. Dear (Eds.), The power of geography (pp. 21–40). London: Allen & Unwin.Google Scholar
  74. Sun, Y., & Grimes, S. (2016). The emerging dynamic structure of national innovation studies: A bibliometric analysis. Scientometrics, 106(1), 17–40.Google Scholar
  75. Thushara, M. G., Krishnapriya, M. S., & Nair, S. S. (2017). A model for auto-tagging of research papers based on keyphrase extraction methods. In 2017 International conference on advances in computing, communications and informatics (ICACCI) (pp. 1695–1700), IEEE. Sept 13–16, Karnataka, India.Google Scholar
  76. Tödtling, F., & Trippl, M. (2005). One size fits all?: Towards a differentiated regional innovation policy approach. Research Policy, 34(8), 1203–1219.Google Scholar
  77. Toivanen, H., & Ponomariov, B. (2011). African regional innovation systems: Bibliometric analysis of research collaboration patterns 2005–2009. Scientometrics, 88(2), 471–493.Google Scholar
  78. Tranfield, D., Denyer, D., & Smart, P. (2003). Toward a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14, 207–222.Google Scholar
  79. Tremblay, D. G., & Rousseau, S. (2005). Le secteur du multimédia à Montréal peut-il être considéré comme un milieu innovateur? Géographie, Économie, Société, 7(1), 37–56.Google Scholar
  80. Uriona-Maldonado, M., dos Santos, R. N., & Varvakis, G. (2012). State of the art on the systems of innovation research: A bibliometrics study up to 2009. Scientometrics, 91(3), 977–996.Google Scholar
  81. Uyarra, E., & Ramlogan, R. (2016). The impact of cluster policy on innovation. In J. Edler, P. Cunningham, A. Gök, & P. Shapira (Eds.), Handbook of innovation policy impact (pp. 196–238). Cheltenham: Edward Elgar Publishing.Google Scholar
  82. Wolfe, D. A., & Gertler, M. S. (2004). Clusters from the inside and out: Local dynamics and global linkages. Urban Studies, 41(5–6), 1071–1093.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of International BusinessHEC MontréalMontrealCanada
  2. 2.Faculty of EngineeringUniversity of DeustoBilbaoSpain
  3. 3.Deusto Business SchoolUniversity of DeustoBilbaoSpain
  4. 4.Deusto Business SchoolUniversity of DeustoDonostia-San SebastiánSpain

Personalised recommendations