Advertisement

Scientometrics

, Volume 119, Issue 3, pp 1387–1428 | Cite as

Social studies of scholarly life with sensor-based ethnographic observations

  • Mark KibanovEmail author
  • Raphael H. Heiberger
  • Simone Rödder
  • Martin Atzmueller
  • Gerd Stumme
Article
  • 59 Downloads

Abstract

Social network analysis is playing an increasingly important role in sociological studies. At the same time, new technologies such as wearable sensors make it possible to collect new types of social network data. We employed RFID tags to capture face-to-face interactions of participants of two consecutive Ph.D. retreats of a graduate school on climate research. We use this data in order to explore how it may support ethnographic observations and to gain further insights on scholarly interactions. The unique feature of the data is the opportunity to distinguish short and long conversations, which often have a different nature from a sociological point of view. Furthermore, an advantage of this data is the availability of socio-demographic, research-related, and situational attributes of participants. We show that, even though an interaction partner is often found rather randomly during coffee breaks of retreats, a strong homophily between participants from the same institutions or research areas exists. We identify cores of the networks and participants who play ambassador roles between communities, e.g., persons who visit the retreat for the second time are more likely to be ambassadors. Overall, we show the usefulness and potential of RFID tags for scientometric studies.

Keywords

Social network analysis Face-to-face interaction RFID Sociology of science Mixed methods 

Notes

Acknowledgements

We thank Christoph Scholz and Björn Fries for helping to collect RFID data during the retreats. This work has been partially supported by Germany’s Excellence Strategy (DFG EXC 177 CliSAP) and the German Research Foundation (DFG) project “MODUS” (Grant AT 88/4-1).

References

  1. Alani, H., Szomszor, M., Cattuto, C., Broeck, W., Correndo, G., & Barrat, A. (2009). Live social semantics. In Proceedings of the 8th international semantic web conference, ISWC’09 (pp. 698–714). Berlin: Springer.Google Scholar
  2. Atzmueller, M. (2015). Subgroup Discovery. WIREs Data Mining and Knowledge Discovery, 5(1), 35–49.CrossRefGoogle Scholar
  3. Atzmueller, M. (2016). Detecting community patterns capturing exceptional link trails. In Proceedings of the IEEE/ACM ASONAM. Boston, MA, USA: IEEE Press.Google Scholar
  4. Atzmueller, M. (2018). Compositional subgroup discovery on attributed social interaction networks. In Proceedings of the international conference on discovery science. Berlin, Germany: Springer.Google Scholar
  5. Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., et al. (2014). Ubicon and its applications for ubiquitous social computing. New Review of Hypermedia and Multimedia, 20(1), 53–77.CrossRefGoogle Scholar
  6. Atzmueller, M., Doerfel, S., & Mitzlaff, F. (2016a). Description-oriented community detection using exhaustive subgroup discovery. Information Sciences, 329, 965–984.CrossRefGoogle Scholar
  7. Atzmueller, M., Fries, B., & Hayat, N. (2016b). Sensing, processing and analytics—Augmenting the ubicon platform for anticipatory ubiquitous computing. In Proceedings of the ACM conference on pervasive and ubiquitous computing adjunct publication, UbiComp’16 Adjunct. New York, NY, USA: ACM Press.Google Scholar
  8. Atzmueller, M., & Lemmerich, F. (2018). Homophily at academic conferences. In Proceeding of the WWW 2018 (Companion). IW3C2/ACM.Google Scholar
  9. Atzmueller, M., Soldano, H., Santini, G., & Bouthinon, D. (2018). MinerLSD: Efficient local pattern mining on attributed graphs. In Proceeding of the 2018 IEEE international conference on data mining workshops (ICDMW).Google Scholar
  10. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590–614.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Barrat, A., Cattuto, C., Szomszor, M., Broeck, W. V. D., & Alani, H. (2010). Social dynamics in conferences: Analyses of data from the live social semantics application. In The Semantic Web—ISWC 2010, Lecture Notes in Computer Science (pp. 17–33). Berlin: Springer.Google Scholar
  12. Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170–1182.CrossRefGoogle Scholar
  13. Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163–177.CrossRefzbMATHGoogle Scholar
  14. Brown, C., Efstratiou, C., Leontiadis, I., Quercia, D., & Mascolo, C. (2014). Tracking serendipitous interactions: How individual cultures shape the office. In Proceedings of the 17th ACM conference on computer supported cooperative work & social computing, CSCW’14 (pp. 1072–1081). New York, NY, USA: ACM.Google Scholar
  15. Cattuto, C., Broeck, W. V. D., Barrat, A., Colizza, V., Pinton, J.-F., & Vespignani, A. (2010). Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE, 5(7), e11596.CrossRefGoogle Scholar
  16. Domínguez, P. S., & Hollstein, D. B. (Eds.). (2014). Mixed methods social networks research: Design and applications (1st ed.). Cambridge: Cambridge University Press.Google Scholar
  17. Duivesteijn, W., & Knobbe, A. (2011). Exploiting false discoveries—Statistical validation of patterns and quality measures in subgroup discovery. In Proceedings of ICDM (pp. 151–160). IEEE.Google Scholar
  18. Eberle, J., Stegmann, K., Fischer, F., Barrat, A., & Lund, K. (2017). Finding collaboration partners in a scientific community: The role of cognitive group awareness, career level, and disciplinary background collaboration and integration of newcomers in scientific communities. In The 12th international conference on computer supported collaborative learning, making a difference: Prioritizing equity and access in CSCL. 12th international conference on computer supported collaborative learning (pp. 519–526). Philadelphia, USA: International Society of the Learning Sciences.Google Scholar
  19. Erdős, P. (1959). On random graphs I. Publicationes Mathematicae (Debrecen), 6, 290–297.MathSciNetzbMATHGoogle Scholar
  20. Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. In Publication of the Mathematical Institute of the Hungarian Academy of Sciences (pp. 17–61).Google Scholar
  21. Frank, A. M., Froese, R., Hof, B. C., Scheffold, M. I. E., Schreyer, F., Zeller, M., et al. (2017). Riding alone on the elevator. Learning and Teaching, 10(3), 1–19.CrossRefGoogle Scholar
  22. Frank, O. (1997). Composition and structure of social networks. Mathématiques et Sciences Humaines, Mathematics and Social Sciences, 137, 11–23.MathSciNetzbMATHGoogle Scholar
  23. Gionis, A., Mannila, H., Mielikäinen, T., & Tsaparas, P. (2007). Assessing data mining results via swap randomization. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(3), 14.CrossRefGoogle Scholar
  24. Goffman, E. (1989). On fieldwork. Journal of Contemporary Ethnography, 18(2), 123–132.CrossRefGoogle Scholar
  25. Görlich, M., & Rödder, S. (2017). Zwischen Lernort und Disputationsprobe. Eine empirische Untersuchung von Advisory Panel Meetings in einem strukturierten Promotionsprogramm in der Klimaforschung. In Geschlossene Gesellschaften - 38. Kongress der Deutschen Gesellschaft für Soziologie (Vol. 38).Google Scholar
  26. Harris, J. K. (2013). An introduction to exponential random graph modeling (new ed.). Los Angeles: Sage Publications Inc.Google Scholar
  27. Heiberger, R. H., & Riebling, J. R. (2016). Installing computational social science: Facing the challenges of new information and communication technologies in social science. Methodological Innovations, 9, 2059799115622763.CrossRefGoogle Scholar
  28. Interdonato, R., Atzmueller, M., Gaito, S., Kanawati, R., Largeron, C., & Sala, A. (2019). Feature-rich networks: Going beyond complex network topologies. Applied Network Science, 4, 4.CrossRefGoogle Scholar
  29. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., & Van den Broeck, W. (2011). What’s in a crowd? Analysis of face-to-face behavioral networks. Journal of Theoretical Biology, 271(1), 166–180.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Kibanov, M., Atzmueller, M., Illig, J., Scholz, C., Barrat, A., Cattuto, C., et al. (2015). Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In 2015 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM) (pp. 697–704).Google Scholar
  31. Lau, D. C., & Murnighan, J. K. (1998). Demographic diversity and faultlines: The compositional dynamics of organizational groups. Academy of Management Review, 23(2), 325–340.CrossRefGoogle Scholar
  32. Leifeld, P., Cranmer, S. J., & Desmarais, B. A. (2018). Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. Journal of Statistical Software, 83(6).Google Scholar
  33. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.CrossRefGoogle Scholar
  34. Macek, B.-E., Scholz, C., Atzmueller, M., & Stumme, G. (2012). Anatomy of a conference. In Proceedings of the 23rd ACM conference on hypertext and social media, HT’12 (pp. 245–254). New York, NY, USA: ACM.Google Scholar
  35. Mastrandrea, R., & Barrat, A. (2016). How to estimate epidemic risk from incomplete contact diaries data? PLOS Computational Biology, 12(6), e1005002.CrossRefGoogle Scholar
  36. Mastrandrea, R., Fournet, J., & Barrat, A. (2015). Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE, 10(9), e0136497.CrossRefGoogle Scholar
  37. McPherson, J. M., & Smith-Lovin, L. (1987). Homophily in voluntary organizations: Status distance and the composition of face-to-face groups. American Sociological Review, 52(3), 370–379.CrossRefGoogle Scholar
  38. McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444.CrossRefGoogle Scholar
  39. Merton, R. K. (1968). The matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.CrossRefGoogle Scholar
  40. Merton, R. K. (1942). Science and technology in a democratic order. Journal of Legal and Political Sociology, 1(1/2), 115–126.Google Scholar
  41. Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Newman, M. E. J. (2004). Detecting community structure in networks. The European Physical Journal B, 38, 321–330.CrossRefGoogle Scholar
  43. Olguin, D., & Pentland, A. (2010). Sensor-based organisational design and engineering. International Journal of Organisational Design and Engineering, 1(1/2), 69.CrossRefGoogle Scholar
  44. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., et al. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences, 104(18), 7332–7336.CrossRefGoogle Scholar
  45. Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007). An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2), 173–191.CrossRefGoogle Scholar
  46. Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., & Stumme, G. (2013a). New insights and methods for predicting face-to-face contacts. In Seventh international AAAI conference on weblogs and social media.Google Scholar
  47. Scholz, C., Atzmueller, M., Kibanov, M., & Stumme, G. (2013b). How do people link? Analysis of contact structures in human face-to-face proximity networks. In 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2013) (pp. 356–363).Google Scholar
  48. Scholz, C., Atzmueller, M., & Stumme G. (2012). On the predictability of human contacts: Influence factors and the strength of stronger ties. In 2012 International conference on privacy, security, risk and trust and 2012 international conference on social computing (pp. 312–321).Google Scholar
  49. Scripps, J., Tan, P. N., & Esfahanian, A. H. (2007). Exploration of link structure and community-based node roles in network analysis. In Seventh IEEE international conference on data mining (ICDM 2007) (pp. 649–654).Google Scholar
  50. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611.MathSciNetCrossRefzbMATHGoogle Scholar
  51. Singer, P., Helic, D., Hotho, A., & Strohmaier, M. (2015). Hyptrails: A bayesian approach for comparing hypotheses about human trails. In Proceedings of WWW New York, NY, USA: ACM.Google Scholar
  52. Smieszek, T., Barclay, V. C., Seeni, I., Rainey, J. J., Gao, H., Uzicanin, A., et al. (2014). How should social mixing be measured: Comparing web-based survey and sensor-based methods. BMC Infectious Diseases, 14, 136.CrossRefGoogle Scholar
  53. Smieszek, T., Castell, S., Barrat, A., Cattuto, C., White, P. J., & Krause, G. (2016). Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: Method comparison and participants’ attitudes. BMC Infectious Diseases, 16, 341.CrossRefGoogle Scholar
  54. Sood, S. K., & Mahajan, I. (2017). Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus. Computers in Industry, 91, 33–44.CrossRefGoogle Scholar
  55. Sood, S. K., & Mahajan, I. (2018). Fog-cloud based cyber-physical system for distinguishing, detecting and preventing mosquito borne diseases. Future Generation Computer Systems, 88, 764–775.CrossRefGoogle Scholar
  56. Stehlé, J., Charbonnier, F., Picard, T., Cattuto, C., & Barrat, A. (2013). Gender homophily from spatial behavior in a primary school: A sociometric study. Social Networks, 35(4), 604–613.CrossRefGoogle Scholar
  57. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.-F., et al. (2011). High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE, 6(8), e23176.CrossRefGoogle Scholar
  58. Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.CrossRefGoogle Scholar
  59. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications (1st ed.). Cambridge: Cambridge University Press. (Number 8 in Structural analysis in the social sciences).CrossRefzbMATHGoogle Scholar
  60. Watts, D. J. (2004). The “new” science of networks. Annual Review of Sociology, 30(1), 243–270.CrossRefGoogle Scholar
  61. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440.CrossRefzbMATHGoogle Scholar
  62. Wu, L., Waber, B., Aral, S., Brynjolfsson, E., & Pentland, A. (2008). Mining face-to-face interaction networks using sociometric badges: Predicting productivity in an IT configuration task. In ICIS 2008 Proceedings.Google Scholar
  63. Yin, Z., Gupta, M., Weninger, T., & Han, J. (2010). Linkrec: A unified framework for link recommendation with user attributes and graph structure. In Proceedings of the 19th international conference on world wide web, WWW’10 (pp. 1211–1212).Google Scholar
  64. Zhou, Y., Cheng, H., & Yu, J. X. (2009). Graph clustering based on structural/attribute similarities. The Proceedings of the VLDB Endowment, 2(1), 718–729.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Mark Kibanov
    • 1
    Email author
  • Raphael H. Heiberger
    • 2
  • Simone Rödder
    • 3
  • Martin Atzmueller
    • 4
  • Gerd Stumme
    • 1
  1. 1.Interdisciplinary Research Center for Information System Design (ITeG), Knowledge and Data Engineering GroupUniversity of KasselKasselGermany
  2. 2.Socium, University of BremenBremenGermany
  3. 3.Department of Social SciencesUniversity of HamburgHamburgGermany
  4. 4.Department of Cognitive Science and Artificial IntelligenceTilburg UniversityTilburgThe Netherlands

Personalised recommendations