Skip to main content
Log in

Spatial spillovers and value chain spillovers: evaluating regional R&D efficiency and its spillover effects in China

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Research and development (R&D) efficiency assessment is an effective way for policymakers to develop strategies to increase the beneficial impacts of R&D. This study measures regional R&D efficiency from a multi-stage R&D perspective. It examines the spatial spillover effects and value chain spillover effects of R&D using panel data from 2009 to 2016 for 30 provinces in China. By estimating a spatial Durbin model, we find evidence of strong spatial dependence in R&D efficiency in China. With respect to R&D value chain effects, we find that R&D value chain spillovers took place intra-regionally but not inter-regionally. This finding indicates that in a knowledge flow context, there are two-way R&D value chain spillovers in which the forward spillover effects are stronger than the backward spillover effects. This finding adds important new knowledge to research on knowledge spillovers: distinguishing between value chain spillovers and spatial spillovers opens new avenues for future empirical inquiries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu, M., Grinevich, V., Kitson, M., & Savona, M. (2008). Absorptive capacity and regional patterns of innovation. London: Department for Innovation, Universities & Skills (DIUS).

  • Aghion, P., Blundell, R., Griffith, R., Howitt, P., & Prantl, S. (2009). The effects of entry on incumbent innovation and productivity. The Review of Economics and Statistics, 91(1), 20–32.

    Article  Google Scholar 

  • Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Aldieri, L., & Cincera, M. (2009). Geographic and technological R&D spillovers within the triad: Micro evidence from US patents. The Journal of Technology Transfer, 34(2), 196–211.

    Article  Google Scholar 

  • Angang, H. (2015). Embracing China‘s new normal. Foreign Affairs, 94(3), 8.

    Google Scholar 

  • Anselin, L. (2013). Spatial econometrics: Methods and models. Berin: Springer.

    Google Scholar 

  • Anselin, L., Varga, A., & Acs, Z. (1997). Local geographic spillovers between university research and high technology innovations. Journal of Urban Economics, 42(3), 422–448.

    Article  Google Scholar 

  • Audretsch, D. B., & Feldman, M. P. (1996). R&D spillovers and the geography of innovation and production. The American Economic Review, 86(3), 630–640.

    Google Scholar 

  • Bai, X., Yan, W., & Chiu, Y. (2015). Performance evaluation of China’s Hi-tech zones in the post financial crisis era—Analysis based on the dynamic network SBM model. China Economic Review, 34, 122–134.

    Article  Google Scholar 

  • Bathelt, H., Malmberg, A., & Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28(1), 31–56.

    Article  Google Scholar 

  • Boeing, P., Mueller, E., & Sandner, P. (2016). China‘s R&D explosion—Analyzing productivity effects across ownership types and over time. Research Policy, 45(1), 159–176.

    Article  Google Scholar 

  • Bottazzi, L., & Peri, G. (2003). Innovation and spillovers in regions: Evidence from European patent data. European Economic Review, 47(4), 687–710.

    Article  Google Scholar 

  • Chang, Y., Zhang, N., Danao, D., & Zhang, N. (2013). Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy, 58, 277–283.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C., Hu, J., & Yang, C. (2011). An international comparison of R&D efficiency of multiple innovative outputs: The role of the national innovation system. Innovation, 13(3), 341–360.

    Article  Google Scholar 

  • Ciżkowicz, P., Ciżkowicz-Pękała, M., Pękała, P., & Rzońca, A. (2016). The effects of special economic zones on employment and investment: A spatial panel modeling perspective. Journal of Economic Geography, 17(3), 571–605.

    Google Scholar 

  • Clermont, M. (2016). Effectiveness and efficiency of research in Germany over time: an analysis of German business schools between 2001 and 2009. Scientometrics, 108(3), 1347–1381.

    Article  Google Scholar 

  • Corinne, A.-B. (2012). Spatial econometrics of innovation: Recent contributions and research perspectives. Spatial Economic Analysis, 7(4), 403–419.

    Article  Google Scholar 

  • Cozzarin, B. P. (2006). Performance measures for the socio-economic impact of government spending on R&D. Scientometrics, 68(1), 41–71.

    Article  Google Scholar 

  • Cullmann, A., Schmidt-Ehmcke, J., & Zloczysti, P. (2011). R&D efficiency and barriers to entry: A two stage semi-parametric DEA approach. Oxford Economic Papers, 64(1), 176–196.

    Article  Google Scholar 

  • De Noni, I., Ganzaroli, A., & Orsi, L. (2017). The impact of intra-and inter-regional knowledge collaboration and technological variety on the knowledge productivity of European regions. Technological Forecasting Social Change, 117, 108–118.

    Article  Google Scholar 

  • De Smith, M. J., Goodchild, M. F., & Longley, P. (2007). Geospatial analysis: A comprehensive guide to principles, techniques and software tools. Winchelsea: Troubador Publishing Ltd.

    Google Scholar 

  • Debarsy, N., Ertur, C., & Lesage, J. P. (2012). Interpreting dynamic space–time panel data models. Statistical Methodology, 9(1–2), 158–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Department of Science & Technology of National Bureau of Statistics. (2017). Statistical Yearbook of China Science and Technology. Beijing: China Statistics Press.

    Google Scholar 

  • Dutta, S., Lanvin, B., & Wunsch-Vincent, S. (2015). The global innovation index 2015. Effective Innovation Policies for Development, Geneva: World Intellectual Property Organization.

  • Dvir, R., & Pasher, E. (2004). Innovation engines for knowledge cities: An innovation ecology perspective. Journal of Knowledge Management, 8(5), 16–27.

    Article  Google Scholar 

  • Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9–28.

    Article  Google Scholar 

  • Elhorst, J. P., Fischer, M. M., & Getis, A. (2010). Handbook of applied spatial analysis. Berlin: Springer.

    Google Scholar 

  • Engelbrecht, H.-J. (2002). Human capital and international knowledge spillovers in TFP growth of a sample of developing countries: An exploration of alternative approaches. Applied Economics, 34(7), 831–841.

    Article  Google Scholar 

  • Erfanian, E., & Ferreira Neto, A. (2017). Scientific output: Labor or capital intensive? An analysis for selected countries. Scientometrics, 112(1), 461–482.

    Article  Google Scholar 

  • Fan, H. (2007). A hypothesis on effective demand size, R&D expenditure and national innovation capacity. Economic Research Journal, 3, 33–44.

    Google Scholar 

  • Fang, C., Guan, X., Lu, S., Zhou, M., & Deng, Y. (2013). Input–output efficiency of urban agglomerations in China: An application of data envelopment analysis (DEA). Urban Studies, 50(13), 2766–2790.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., & Whittaker, G. (2007). Network dea. In J. Zhu & W. D. Cook (Eds.), Modeling data irregularities and structural complexities in data envelopment analysis (pp. 209–240). Berlin: Springer.

    Chapter  Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120, 253–281.

    Article  Google Scholar 

  • Fitjar, R. D., & Rodríguez-Pose, A. (2013). Firm collaboration and modes of innovation in Norway. Research Policy, 42(1), 128–138.

    Article  Google Scholar 

  • Fritsch, M., & Franke, G. (2004). Innovation, regional knowledge spillovers and R&D cooperation. Research Policy, 33(2), 245–255.

    Article  Google Scholar 

  • Fritsch, M., & Slavtchev, V. (2011). Determinants of the efficiency of regional innovation systems. Regional Studies, 45(7), 905–918.

    Article  Google Scholar 

  • Ganotakis, P., & Love, J. H. (2012). The innovation value chain in new technology-based firms: Evidence from the UK. Journal of Product Innovation Management, 29(5), 839–860.

    Article  Google Scholar 

  • George, G., Zahra, S. A., & Wood, D. R. (2002). The effects of business-university alliances on innovative output and financial performance: A study of publicly traded biotechnology companies. Journal of Business Venturing, 17(6), 577–609.

    Article  Google Scholar 

  • Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity growth. The Bell Journal of Economics, 10(1), 92–116.

    Article  Google Scholar 

  • Griliches, Z. (1998). Patent statistics as economic indicators: A survey. Chicago: University of Chicago Press.

    Google Scholar 

  • Guan, J., & Chen, K. (2010). Modeling macro-R&D production frontier performance: An application to Chinese province-level R&D. Scientometrics, 82(1), 165–173.

    Article  Google Scholar 

  • Guellec, D., & De La Potterie, B. V. (2002). R&D and productivity growth. OECD Economic Studies, 2001(2), 103–126.

    Article  Google Scholar 

  • Hansen, M. T., & Birkinshaw, J. (2007). The innovation value chain. Harvard Business Review, 85(6), 121.

    Google Scholar 

  • Hershberg, E., Nabeshima, K., & Yusuf, S. (2007). Opening the Ivory Tower to business: University-industry linkages and the development of knowledge-intensive clusters in Asian Cities. World Development, 35(6), 931–940.

    Article  Google Scholar 

  • Hewitt-Dundas, N., & Roper, S. (2010). Output additionality of public support for innovation: Evidence for Irish manufacturing plants. European Planning Studies, 18(1), 107–122.

    Article  Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598.

    Article  Google Scholar 

  • Klenow, P. J., & Rodriguez-Clare, A. (1997). The neoclassical revival in growth economics: Has it gone too far? Nber Macroeconomics Annual, 12, 73–103.

    Article  Google Scholar 

  • Leibenstein, H. (1966). Allocative efficiency versus X-efficiency. The American Economic Review, 56(3), 392–415.

    Google Scholar 

  • LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. New York: CRC Press.

    Book  MATH  Google Scholar 

  • Marrocu, E., Paci, R., & Usai, S. (2013). Proximity, networking and knowledge production in Europe: What lessons for innovation policy? Technological Forecasting Social Change, 80(8), 1484–1498.

    Article  Google Scholar 

  • Maurseth, P. B., & Verspagen, B. (2002). Knowledge spillovers in Europe: A patent citations analysis. Scandinavian Journal of Economics, 104(4), 531–545.

    Article  Google Scholar 

  • Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society: Series B (Methodological), 10(2), 243–251.

    MathSciNet  MATH  Google Scholar 

  • Moreno, R., Paci, R., & Usai, S. (2005). Spatial spillovers and innovation activity in European regions. Environment and Planning A, 37(10), 1793–1812.

    Article  Google Scholar 

  • Motohashi, K. (2005). University–industry collaborations in Japan: The role of new technology-based firms in transforming the National Innovation System. Research Policy, 34(5), 583–594.

    Article  Google Scholar 

  • Ouyang, P., & Fu, S. (2012). Economic growth, local industrial development and inter-regional spillovers from foreign direct investment: Evidence from China. China Economic Review, 23(2), 445–460.

    Article  Google Scholar 

  • Paci, R., & Usai, S. (1999). Externalities, knowledge spillovers and the spatial distribution of innovation. GeoJournal, 49(4), 381–390.

    Article  Google Scholar 

  • Parent, O., & LeSage, J. P. (2008). Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers. Journal of Applied Econometrics, 23(2), 235–256.

    Article  MathSciNet  Google Scholar 

  • Pijnenburg, K., & Kholodilin, K. A. (2014). Do regions with entrepreneurial neighbours perform better? A spatial econometric approach for German regions. Regional Studies, 48(5), 866–882.

    Article  Google Scholar 

  • Premachandra, I., Zhu, J., Watson, J., & Galagedera, D. U. (2012). Best-performing US mutual fund families from 1993 to 2008: Evidence from a novel two-stage DEA model for efficiency decomposition. Journal of Banking Finance, 36(12), 3302–3317.

    Article  Google Scholar 

  • Qiu, J. (2014). China goes back to basics on research funding: Core science gets budget boost in a bid to change research culture and increase innovation. Nature, 507(7491), 148–150.

    Article  Google Scholar 

  • Rodríguez-Pose, A. (2001). Is R&D investment in lagging areas of Europe worthwhile? Theory and empirical evidence. Papers in Regional Science, 80(3), 275–295.

    Article  Google Scholar 

  • Roper, S., Du, J., & Love, J. H. (2008). Modelling the innovation value chain. Research Policy, 37(6), 961–977.

    Article  Google Scholar 

  • Rothaermel, F. T., & Deeds, D. L. (2006). Alliance type, alliance experience and alliance management capability in high-technology ventures. Journal of Business Venturing, 21(4), 429–460.

    Article  Google Scholar 

  • Rousseau, S., & Rousseau, R. (1997). Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics, 40(1), 45–56.

    Article  MathSciNet  Google Scholar 

  • Rousseau, S., & Rousseau, R. (1998). The scientific wealth of European nations: Taking effectiveness into account. Scientometrics, 42(1), 75–87.

    Article  MathSciNet  Google Scholar 

  • Scherngell, T., Borowiecki, M., & Hu, Y. (2014). Effects of knowledge capital on total factor productivity in China: A spatial econometric perspective. China Economic Review, 29, 82–94.

    Article  Google Scholar 

  • Segerstrom, P. S. (1991). Innovation, imitation, and economic growth. Journal of Political Economy, 99(4), 807–827.

    Article  Google Scholar 

  • Shang, Q., Poon, J. P. H., & Yue, Q. (2012). The role of regional knowledge spillovers on China’s innovation. China Economic Review, 23(4), 1164–1175.

    Article  Google Scholar 

  • Sharma, S., & Thomas, V. (2008). Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 76(3), 483–501.

    Article  Google Scholar 

  • Teitel, S. (1994). Patents, R&D expenditures, country size, and per-capita income: An international comparison. Scientometrics, 29(1), 137–159.

    Article  Google Scholar 

  • Tidd, J., Bessant, J., & Pavitt, K. (2005). Managing innovation integrating technological, market and organizational change. Hoboken: Wiley.

    Google Scholar 

  • Tijssen, R. J. W., Yegros-Yegros, A., & Winnink, J. J. (2016). University–industry R&D linkage metrics: Validity and applicability in world university rankings. Scientometrics, 109(2), 677–696.

    Article  Google Scholar 

  • Tobler, W. R. (1979). Cellular geography. In S. Gale & G. Olsson (Eds.), Philosophy in geography (pp. 379–386). Berlin: Springer.

    Chapter  Google Scholar 

  • Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243–252.

    Article  MATH  Google Scholar 

  • Wang, E. C. (2007). R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach. Journal of Policy Modeling, 29(2), 345–360.

    Article  Google Scholar 

  • Werner, B. M., & Souder, W. E. (1997). Measuring R&D performance—State of the art. Research Technology Management, 40(2), 34–42.

    Article  Google Scholar 

  • Wolszczak-Derlacz, J., & Parteka, A. (2011). Efficiency of European public higher education institutions: A two-stage multicountry approach. Scientometrics, 89(3), 887–917.

    Article  Google Scholar 

  • Yang, T. C., Noah, A. J., & Shoff, C. (2015). Exploring geographic variation in US mortality rates using a spatial Durbin approach. Population Space & Place, 21(1), 18–37.

    Article  Google Scholar 

  • Yeung, H. W.-C., Liu, W., & Dicken, P. (2006). Transnational corporations and network effects of a local manufacturing cluster in mobile telecommunications equipment in China. World Development, 34(3), 520–540.

    Article  Google Scholar 

  • Yu, M.-M. (2010). Assessment of airport performance using the SBM-NDEA model. Omega, 38(6), 440–452.

    Article  Google Scholar 

  • Zabala-Iturriagagoitia, J. M., Voigt, P., Gutiérrez-Gracia, A., & Jiménez-Sáez, F. (2007). Regional innovation systems: How to assess performance. Regional Studies, 41(5), 661–672.

    Article  Google Scholar 

  • Zhang, A., Zhang, Y., & Zhao, R. (2003). A study of the R&D efficiency and productivity of Chinese firms. Journal of Comparative Economics, 31(3), 444–464.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 41471108) and Peak Discipline Construction Project of Education at East China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debin Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Du, D. & Kwan, MP. Spatial spillovers and value chain spillovers: evaluating regional R&D efficiency and its spillover effects in China. Scientometrics 119, 721–747 (2019). https://doi.org/10.1007/s11192-019-03054-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03054-7

Keywords

Navigation