Advertisement

Measuring academic influence using heterogeneous author-citation networks

  • Fen ZhaoEmail author
  • Yi Zhang
  • Jianguo Lu
  • Ofer Shai
Article
  • 66 Downloads

Abstract

Academic influence has been traditionally measured by citation counts and metrics derived from it, such as H-index and G-index. PageRank based algorithms have been used to give higher weight to citations from more influential papers. A better metric is to add authors into the citation network so that the importance of authors and papers are evaluated recursively within the same framework. Based on such heterogeneous author-citation academic network, this paper gives a new algorithm for ranking authors. It is tested on two large networks, one in Heath domain that contains about 500 million citation links, the other in Computer Science that contains 8 million links. We find that our method outperforms other 10 methods in terms of the number of award winners identified in their top-k rankings. Surprisingly, our method can identify 8 Turing award winners among top 20 authors. It also demonstrates some interesting phenomenons. For instance, among the top authors, our ranking negatively correlates with citation ranking and paper count ranking.

Keywords

Heterogeneous network Author ranking PageRank Scholarly data 

Notes

Acknowledgements

The research is supported by NSERC Discovery Grant.

References

  1. Amjad, T., & Daud, A. (2017). Indexing of authors according to their domain of expertise. Malaysian Journal of Library and Information Science, 22, 69–82.CrossRefGoogle Scholar
  2. Amjad, T., Daud, A., & Akram, A. (2015a). Mutual influence based ranking of authors. Mehran University Research Journal of Engineering and Technology., 34, 103–112.Google Scholar
  3. Amjad, T., Daud, A., & Aljohani, N. R. (2018). Ranking authors in academic social networks: A survey. Library Hi Tech, 36(1), 97–128.CrossRefGoogle Scholar
  4. Amjad, T., Ding, Y., Daud, A., Xu, J., & Malic, V. (2015b). Topic-based heterogeneous rank. Scientometrics, 104(1), 313–334.CrossRefGoogle Scholar
  5. Bergstrom, C. T., West, J. D., & Wiseman, M. A. (2008). The EigenfactorTM Metrics. Journal of Neuroscience, 28(45), 11433–11434.CrossRefGoogle Scholar
  6. Bibi, F., Khan, H., Iqbal, T., Farooq, M., Mehmood, I., & Nam, Y. (2018). Ranking authors in an academic network using social network measures. Applied Sciences, 8(10), 1824.CrossRefGoogle Scholar
  7. Bollen, J., Rodriquez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669–687.CrossRefGoogle Scholar
  8. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113–120.CrossRefGoogle Scholar
  9. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  10. Chen, P., Xie, H., Maslov, S., & Redner, S. (2007). Finding scientific gems with Google’s PageRank algorithm. Journal of Informetrics, 1(1), 8–15.CrossRefGoogle Scholar
  11. Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Daud, A., Aljohani, N. R., Abbasi, R. A., Rafique, Z., Amjad, T., Dawood, H., & Alyoubi, K. H. (2017). Finding rising stars in co-author networks via weighted mutual influence. In Proceedings of the 26th international conference on World Wide Web companion, international World Wide Web conferences steering committee (pp. 33–41).Google Scholar
  13. Dellavalle, R. P., Schilling, L. M., Rodriguez, M. A., Van de Sompel, H., & Bollen, J. (2007). Refining dermatology journal impact factors using PageRank. Journal of the American Academy of Dermatology, 57(1), 116–119.CrossRefGoogle Scholar
  14. Ding, Y., Yan, E., Frazho, A., & Caverlee, J. (2009). PageRank for ranking authors in co-citation networks. Journal of the American Society for Information Science and Technology, 60(11), 2229–2243.CrossRefGoogle Scholar
  15. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.MathSciNetCrossRefGoogle Scholar
  16. Fragkiadaki, E., & Evangelidis, G. (2016). Three novel indirect indicators for the assessment of papers and authors based on generations of citations. Scientometrics, 106(2), 657–694.CrossRefGoogle Scholar
  17. Gao, C., Wang, Z., Li, X., Zhang, Z., & Zeng, W. (2016). PR-index: Using the H-index and pagerank for determining true impact. PloS One, 11(9), e0161755.CrossRefGoogle Scholar
  18. González-Pereira, B., Guerrero-Bote, V. P., & Moya-Anegón, F. (2010). A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of Informetrics, 4(3), 379–391.CrossRefGoogle Scholar
  19. Gross, P. L. K., & Gross, E. M. (1927). College libraries and chemical education. Science, 66(1713), 385–389.CrossRefGoogle Scholar
  20. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology, 143(1), 29–36.CrossRefGoogle Scholar
  21. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.CrossRefzbMATHGoogle Scholar
  22. Liang, R., & Jiang, X. (2016). Scientific ranking over heterogeneous academic hypernetwork. In Proceedings of the Thirtieth AAAI conference on artificial intelligence, AAAI’16 (pp. 20–26). AAAI Press.Google Scholar
  23. Lindsey, D. (1982). Further evidence for adjusting for multiple authorship. Scientometrics, 4(5), 389–395.CrossRefGoogle Scholar
  24. Liu, N. C., & Cheng, Y. (2005). The academic ranking of World Universities. Higher Education in Europe, 30(2), 127–136.CrossRefGoogle Scholar
  25. Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480.CrossRefGoogle Scholar
  26. Ma, N., Guan, J., & Zhao, Y. (2008). Bringing PageRank to the citation analysis. Information Processing and Management, 44(2), 800–810.CrossRefGoogle Scholar
  27. Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056103.CrossRefGoogle Scholar
  28. Sayyadi, H., & Getoor, L. (2009). FutureRank: Ranking scientific articles by predicting their future PageRank. In C. Apte, H. Park, K. Wang, M. J. Zaki (Eds.), Proceedings of the 2009 SIAM international conference on data mining, society for industrial and applied mathematics, (pp. 533–544). Philadelphia, PA,  https://doi.org/10.1137/1.9781611972795.46.
  29. Sidiropoulos, A., & Manolopoulos, Y. (2006). Generalized comparison of graph-based ranking algorithms for publications and authors. Journal of Systems and Software, 79(12), 1679–1700.CrossRefGoogle Scholar
  30. Steinbrüchel, C. (2018). A citation index for principal investigators. Scientometrics.  https://doi.org/10.1007/s11192-018-2971-8.Google Scholar
  31. Su, C., Pan, Y., Zhen, Y., Ma, Z., Yuan, J., Guo, H., et al. (2011). PrestigeRank: A new evaluation method for papers and journals. Journal of Informetrics, 5(1), 1–13.CrossRefGoogle Scholar
  32. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., & Wu, T. (2009). RankClus: Integrating clustering with ranking for heterogeneous information network analysis. In Proceedings of the 12th international conference on extending database technology advances in database technology - EDBT ’09 (p. 565). ACM Press, Saint Petersburg, Russia.Google Scholar
  33. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., & Su, Z. (2008). ArnetMiner: Extraction and mining of academic social networks. In Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining - KDD 08 (p. 990). ACM Press, Las Vegas, Nevada, USA.Google Scholar
  34. Usmani, A., & Daud, A. (2017). Unified author ranking based on integrated publication and venue rank. International Arab Journal of Information Technology (IAJIT), 14(1), 111–117.Google Scholar
  35. Walker, D., Xie, H., Yan, K. K., & Maslov, S. (2007). Ranking scientific publications using a model of network traffic. Journal of Statistical Mechanics: Theory and Experiment, 06, P06010–P06010.Google Scholar
  36. Wang, Y., Tong, Y., & Zeng, M. (2013). Ranking scientific articles by exploiting citations, authors, journals, and time information. In Proceedings of the twenty-seventh AAAI conference on artificial intelligence, AAAI’13 (pp. 933–939). AAAI Press.Google Scholar
  37. West, J. D., Jensen, M. C., Dandrea, R. J., Gordon, G. J., & Bergstrom, C. T. (2013). Author-level Eigenfactor metrics: Evaluating the influence of authors, institutions, and countries within the social science research network community. Journal of the American Society for Information Science and Technology, 64(4), 787–801.CrossRefGoogle Scholar
  38. Yan, E. (2014). Topic-based Pagerank: Toward a topic-level scientific evaluation. Scientometrics, 100(2), 407–437.CrossRefGoogle Scholar
  39. Yan, E., & Ding, Y. (2011). Discovering author impact: A PageRank perspective. Information Processing and Management, 47(1), 125–134.CrossRefGoogle Scholar
  40. Zhou, D., Orshanskiy, S. A., Zha, H., & Giles, C. L. (2007). Co-ranking authors and documents in a heterogeneous network. In Seventh IEEE international conference on data mining (ICDM 2007) (pp. 739–744). IEEE, Omaha, NE, USA.Google Scholar
  41. Zhou, J., Zeng, A., Fan, Y., & Di, Z. (2016). Ranking scientific publications with similarity-preferential mechanism. Scientometrics, 106(2), 805–816.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of WindsorWindsorCanada
  2. 2.Chan Zuckerberg Initiative Inc.TorontoCanada

Personalised recommendations