Advertisement

Why do ecologists search for co-authorships? Patterns of co-authorship networks in ecology (1977–2016)

Article
  • 43 Downloads

Abstract

Here, the pattern of co-authorship among ecologists was evaluated using a network approach that was built using four time periods (1977–1986, 1987–1996, 1997–2006, and 2007–2016). Furthermore, four potential explanations (geographic distance, word similarity, reputation asymmetry, and country development) for this pattern were evaluated. Distance and reputation asymmetry effects on collaboration have decreased in recent decades, whereas word similarity was a good predictor in recent decades. Of interest, country development was not a good predictor of co-authorship among ecologists.

Keywords

Co-authorship networks Research collaboration Ecology Homophily 

Notes

Acknowledgements

I received a scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). I am grateful for all comments made on the manuscript during the peer-review process.

Supplementary material

11192_2018_2835_MOESM1_ESM.docx (88 kb)
Supplementary material 1 (DOCX 87 kb)

References

  1. Barabási, A., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.  https://doi.org/10.1126/science.286.5439.509.MathSciNetCrossRefMATHGoogle Scholar
  2. Borrett, S. R., Moody, J., & Edelmann, A. (2014). The rise of network ecology: Maps of the topic diversity and scientific collaboration. Ecological Modelling, 293, 111–127.  https://doi.org/10.1016/j.ecolmodel.2014.02.019.CrossRefGoogle Scholar
  3. Brown, J. H., & Maurer, B. A. (1989). Macroecology: The division of food and space among species on continents. Science, 243(4895), 1145–1150.  https://doi.org/10.1177/0309133308094425.CrossRefGoogle Scholar
  4. Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235.  https://doi.org/10.1177/053901883022002003.CrossRefGoogle Scholar
  5. Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 66111.  https://doi.org/10.1103/PhysRevE.70.066111.CrossRefGoogle Scholar
  6. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9.Google Scholar
  7. Day, R. (1989). The origins of the scientific paper: The IMRaD format. American Medical Writers Association Journal, 4(2), 16–18.MathSciNetGoogle Scholar
  8. de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.  https://doi.org/10.1126/science.149.3683.510.CrossRefGoogle Scholar
  9. Feinerer, I., & Hornik, K. (2017). tm: Text mining package. R package version 0.7-1. https://CRAN.R-project.org/package=tm. Accessed 30 May 2017.
  10. Freeman, L. C. (1996). Some antecedents of social network analysis. Connections, 19(1), 39–42.Google Scholar
  11. Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164.  https://doi.org/10.1002/spe.4380211102.Google Scholar
  12. Hijmans, R. J. (2016). raster: Geographic data analysis and modeling. R package version 2.5-8. https://CRAN.R-project.org/package=raster. Accessed 30 May 2017.
  13. Holmgren, M., & Schnitzer, S. A. (2004). Science on the rise in developing countries. PLoS Biology, 2(1), 10–13.  https://doi.org/10.1371/journal.pbio.0020001.CrossRefGoogle Scholar
  14. Jamali, H. R., & Nikzad, M. (2011). Article title type and its relation with the number of downloads and citations. Scientometrics, 88(2), 653–661.  https://doi.org/10.1007/s11192-011-0412-z.CrossRefGoogle Scholar
  15. Kahle, D., & Wickham, H. (2013) ggmap: Spatial visualization with ggplot2. The R Journal, 5(1):144–161. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
  16. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. Proceedings of the National Academy of Sciences, 102(33), 11623–11628.  https://doi.org/10.1073/pnas.0503018102.CrossRefGoogle Scholar
  17. Logan, J. M. (2016). Historical changes in co-author numbers in ecology. Frontiers in Ecology and the Environment, 14(6), 297–299.  https://doi.org/10.1002/fee.1301.CrossRefGoogle Scholar
  18. McDowell, J. M., & Melvin, M. (1983). The determinants of co-authorship: An analysis of the economics literature. The Review of Economics and Statistics, 65(1), 155–160.CrossRefGoogle Scholar
  19. Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.  https://doi.org/10.1126/science.159.3810.56.CrossRefGoogle Scholar
  20. Moody, J. (2004) The structure of a social science collaboration network: Disciplinary cohesio from 1963 to 1999. American Journal of Sociology 69(2):213–238. http://www.jstor.org/stable/3593085.
  21. Neff, M. W., & Corley, E. A. (2009). 35 years and 160,000 articles: A bibliometric exploration of the evolution of ecology. Scientometrics, 80(3), 657–682.  https://doi.org/10.1007/s11192-008-2099-3.CrossRefGoogle Scholar
  22. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(Supplement 1), 5200–5205.  https://doi.org/10.1073/pnas.0307545100.CrossRefGoogle Scholar
  23. Pan, R. K., Kaski, K., & Fortunato, S. (2012). World citation and collaboration networks: Uncovering the role of geography in science. Scientific Reports, 2, 902.  https://doi.org/10.1038/srep00902.CrossRefGoogle Scholar
  24. Plavén-Sigray, P., Matheson, G. J., Schiffler, B. C., & Thompson, W. H. (2017). The readability of scientific texts is decreasing over time. eLife.  https://doi.org/10.7554/eLife.27725.Google Scholar
  25. Ponds, R., van Oort, F., & Frenken, K. (2007). The geographical and institutional proximity of research collaboration. Papers in Regional Science, 86(3), 423–443.  https://doi.org/10.1111/j.1435-5957.2007.00126.x.CrossRefGoogle Scholar
  26. R Development Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 30 May 2017.
  27. Thomson Reuters. (2016). 2015 Journal Citation Reports® Science Edition. http://jcr.incites.thomsonreuters.com/. Accessed 30 May 2017.
  28. Tregenza, T. (2002). Gender bias in the refereeing process? Trends in Ecology and Evolution, 17(8), 349–350.  https://doi.org/10.1016/S0169-5347(02)02545-4.CrossRefGoogle Scholar
  29. United Nations Development Programme. (2016). Human development report 2016: Human development for everyone. Washington, DC: Communications Development Incorporated.Google Scholar
  30. Wagner, C. S., & Leydesdorff, L. (2005). Network structure, self-organization, and the growth of international collaboration in science. Research Policy, 34(10), 1608–1618.  https://doi.org/10.1016/j.respol.2005.08.002.CrossRefGoogle Scholar
  31. Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.  https://doi.org/10.1126/science.1136099.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations