Advertisement

Science & Education

, Volume 27, Issue 9–10, pp 921–961 | Cite as

Modeling Conceptualization and Investigating Teaching Effectiveness

A Comparative Case Study of Earthquakes Studied in Classroom Practice and in Science
  • Jérôme SantiniEmail author
  • Tracy Bloor
  • Gérard Sensevy
Article

Abstract

Our research addresses the issue of teaching and learning concepts in science education as an empirical question. We study the process of conceptualization by closely examining the unfolding of classroom lesson sequences. We situate our work within the practice turn line of research on epistemic practices in science education. We also adopt a practice turn approach when it comes to the learning of concepts, as we consider conceptualization as being inherent within epistemic practices. In our work, pedagogical practices are modeled as learning games and epistemic practices in science education are characterized as enacted epistemic games emerging through the unfolding of learning games. Science practices are modeled as source epistemic games since they are the source of the knowledge at stake in pedagogical practices. From this point, we examine closely how playing learning games can enable students to play enacted epistemic games and then in turn the source epistemic games at the core of conceptual understanding. Thus, the main contribution of this paper is to link pedagogical practices to epistemic practices in science education and to science practices in general. Our method is consistent with this epistemological framework as our case study on the concept of earthquakes in a 5th grade classroom sequence illustrates. Following an investigation of two experienced teachers and their classes during a teaching unit, our analysis shows how teaching effectiveness is determined by a dialectic. This entails on the one hand a didactic continuity between learning games and enacted epistemic games and, on the other, an epistemic continuity between enacted epistemic games and source epistemic games.

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Agnew, D. C. (2002). History of seismology. In W. Lee, H. Kanamori, P. Jennings, & C. Kisslinger (Eds.), International handbook of earthquake and engineering seismology (Vol. a, pp. 3–11). Amsterdam. Boston: Academic Press.Google Scholar
  2. Bazin, J. (2008). Des clous dans la Joconde: l’anthropologie autrement. Toulouse: Anacharsis.Google Scholar
  3. Berland, L. K., & McNeill, K. L. (2012). For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 96(5), 808–813.Google Scholar
  4. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2016). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching, 53(7), 1082–1112.Google Scholar
  5. Bernstein, B. (2003). The structuring of pedagogic discourse. New York. London: Routledge.Google Scholar
  6. Bourdieu, P. (1990). In other words: Essays towards a reflexive sociology. Cambridge: Polity Press.Google Scholar
  7. Bueno, J., & Marandino, M. (2017). The notion of praxeology as a tool to analyze educational process in science museums. In K. Hahl, K. Juuti, J. Lampiselkä, A. Uitto, & J. Lavonen (Eds.), Cognitive and affective aspects in science education research (pp. 339–355). Cham: Springer.Google Scholar
  8. Brandom, R. (1994). Making it explicit: Reasoning, representing, and discursive commitment. Cambridge: Harvard University Press.Google Scholar
  9. Brandom, R. (1999). Some pragmatist themes in Hegel’s idealism: Negotiation and administration in Hegel’s account of the structure and content of conceptual norms. European Journal of Philosophy, 7(2), 164–189.Google Scholar
  10. Brandom, R. (2001). Articulating reasons: An introduction to inferentialism. Cambridge: Harvard University Press.Google Scholar
  11. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.Google Scholar
  12. Brousseau, G., Brousseau, N., & Warfield, V. (2014a). Teaching fractions through situations: A fundamental experiment. Berlin: Springer.Google Scholar
  13. Brousseau, G., Sarrazy, B., & Novotná, J. (2014b). Didactic contract in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 153–159). Berlin: Springer.Google Scholar
  14. Bruner, J. (1983). Child talk. New York: Norton.Google Scholar
  15. Bulterman-Bos, J. A. (2008). Will a clinical approach make education research more relevant for practice? Educational Researcher, 37(7), 412.Google Scholar
  16. Bulterman-Bos, J. (2017). How can a clinical research approach contribute to knowledge-building for the teaching profession? Educational Action Research, 25(1), 119–127.Google Scholar
  17. Buty, C., Tiberghien, A., & Le Maréchal, J.-F. (2004). Learning hypotheses and associated tools to design and to analyse teaching-learning sequences. International Journal of Science Education, 26(5), 579–604.Google Scholar
  18. Cartwright, N. (1989). Nature’s capacities and their measurement. Oxford: Clarendon Press.Google Scholar
  19. Cartwright, N. (1999). The dappled world. Cambridge: Cambridge University Press.Google Scholar
  20. Cartwright, N. (2007). Hunting causes and using them. Cambridge: Cambridge University Press.Google Scholar
  21. Chevallard, Y. (1988). Sur l’analyse didactique: Deux études sur la notions de contrat et de situation. Marseille: IREM d’Aix-Marseille.Google Scholar
  22. Chevallard, Y. (1991). La transposition didactique. Du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage.Google Scholar
  23. Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. In R. Douady & A. Mercier (Eds.), Research in Didactique of Mathematics, selected papers (pp. 131–168). Grenoble: La Pensée Sauvage.Google Scholar
  24. Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (Ed.), Proceedings of the 4th Conference of the European Society for Research in Mathematics Education (CERME 4) (pp. 21–30). Barcelone: Universitat Ramon Llull.Google Scholar
  25. Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6(2), 131–134.Google Scholar
  26. Chi, M. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of sciences (pp. 129–186). Minneapolis: The University of Minnesota Press.Google Scholar
  27. Chi, M. (1997). Quantifying qualitative analyses of verbal data: A practical guide. Journal of the Learning Sciences, 6(3), 271–315.Google Scholar
  28. Cobb, P., & Bowers, J. (1999). Cognitive and situated learning perspectives in theory and practice. Educational Researcher, 28(2), 4–15.Google Scholar
  29. Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide inquiry. Educational Psychologist, 28(1), 25–42.Google Scholar
  30. Cunningham, C. M., & Kelly, G. J. (2017). Epistemic practices of engineering for education. Science Education, 101(3), 486–505.Google Scholar
  31. Deleuze, G., & Guattari, F. (2014). What is philosophy? New York, NY: Columbia University Press.Google Scholar
  32. Detienne, M. (2008). Comparing the incomparable. Stanford: Stanford University Press.Google Scholar
  33. Dewey, J., & Byerly, P. (1969). The early history of seismometry (to 1900). Bulletin of the Seismological Society of America, 59(1), 183–227.Google Scholar
  34. Dewey, J. (1997). Experience and education. New York: Touchstone.Google Scholar
  35. DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2–3), 105–225.Google Scholar
  36. DiSessa, A. A. (2006). A history of conceptual change research: Threads and fault lines. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 265–282). New York, NY: Cambridge University Press.Google Scholar
  37. Dupré, J. (2001). In defence of classification. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 32(2), 203–219.Google Scholar
  38. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291.Google Scholar
  39. Elias, N. (2012). What is sociology? Dublin: University Dublin College Press.Google Scholar
  40. Ercikan, K., & Roth, W. M. (2006). What good is polarizing research into qualitative and quantitative? Educational Researcher, 35(5), 14–23.Google Scholar
  41. Fleck, L. (1979). Genesis and development of a scientific fact. Chicago: University of Chicago Press.Google Scholar
  42. Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382.Google Scholar
  43. Ford, M. J. (2005). The game, the pieces, and the players: Generative resources from two instructional portrayals of experimentation. Journal of the Learning Sciences, 14(4), 449.Google Scholar
  44. Foucault, M. (1963). The birth of the clinic. London: Routledge.Google Scholar
  45. Foundation La main à la pâte. (2018). La main à la pâte. http://www.fondation-lamap.org/en/international. Accessed 19 november 2018.
  46. Galantucci, B., & Sebanz, N. (2009). Joint action: Current perspectives. Topics in Cognitive Science, 1(2), 255–259.Google Scholar
  47. Gargani, A. G. (2009). Le savoir sans fondements. La conduite intellectuelle comme structuration de l’expérience commune. Paris: Librairie Philosophique J. Vrin.Google Scholar
  48. Gargani, A. G. (2010). The manifold turns of truth. A biographical-theoretical interview with Manlio Iofrida. Iris, 2, 289–345.Google Scholar
  49. Ginzburg, C. (1983). Clues: Morelli, Freud, and Sherlock Holmes. In U. Eco & T. Sebeok (Eds.), Clues: Morelli, Freud, and Sherlock Holmes (pp. 81–118). Bloomington and Indianapolis: Indiana University Press.Google Scholar
  50. Goetz, C., Leurgans, S., Hinson, V., Blasucci, L., Zimmerman, J., Fan, W., Nguyen, T., & Hsu, A. (2008). Evaluating Parkinson’s disease patients at home: Utility of self-videotaping for objective motor, dyskinesia, and ON–OFF assessments. Movement Disorders, 23(10), 1479–1482.Google Scholar
  51. Goffman, E. (1970). Strategic interaction. London: Basil Blackwell.Google Scholar
  52. Gruson, B., & Marlot, C. (2016). Do teachers make all their students play the same learning games? Teaching Education, 27(1), 1–20.Google Scholar
  53. Guidoboni, E., & Poirier, J.-P. (2004). Quand la Terre tremblait. Paris: Odile Jacob.Google Scholar
  54. Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.Google Scholar
  55. Hammer, D., & Berland, L. K. (2014). Confusing claims for data: A critique of common practices for presenting qualitative research on learning. Journal of the Learning Sciences, 23(1), 37–46.Google Scholar
  56. Hamza, K., & Wickman, P.-O. (2007). Describing and analyzing learning in action: An empirical study of the importance of misconceptions in learning science. Science Education, 92(1), 141–164.Google Scholar
  57. Hamza, K., & Wickman, P.-O. (2009). Beyond explanations: What else do students need to understand science? Science Education, 93(6), 1026–1049.Google Scholar
  58. Herbst, P., & Kilpatrick, J. (1999). Pour lire Brousseau (Reading Brousseau). For the Learning of Mathematics, 19(1), 3–10.Google Scholar
  59. Hintikka, J., & Sandu, G. (2006). What is logic? In D. Gabbay, P. Thagard, & P. Woods (Eds.), Philosophy of logic (Vol. 5, pp. 13–18). London: Elsevier.Google Scholar
  60. Hudson, B., & Meyer, M. (2011). Beyond Fragmentation: Didactics, Learning and Teaching in Europe. Portland, OR: Barbara Budrich.Google Scholar
  61. de Grenoble, I. R. E. M. (1980). Quel est l’âge du capitaine? Bulletin de l’APMEP, 323, 235–243.Google Scholar
  62. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7–8), 591–607.Google Scholar
  63. Jiménez-Aleixandre, M. P., & Crujeiras, B. (2017). Epistemic practices and scientific practices in science education. In K. S. Taber & B. Akpan (Eds.), Science education: An international course companion (pp. 69–80). Rotterdam: Sense Publishers.Google Scholar
  64. Jiménez-Aleixandre, M. P., Duschl, R., Zohar, A., Erduran, S., Hamza, K., Jesus, P., Wickman, P.-O., Angelin, M. & Ryder, J. (2016). Current Challenges about Epistemic Practices and Scientific Practices in Science Education (Symposium). Presented at NARST Annual International Conference, Baltimore, MD, April 14–17.Google Scholar
  65. Joffredo-Le Brun, S., Morellato, M., Sensevy, G., & Quilio, S. (2018). Cooperative engineering as a joint action. European Educational Research Journal, 17(1), 187–208.Google Scholar
  66. Johansson, A.-M, & Wickman, P.-O. (2011). A Pragmatist Understanding of Learning Progressions. In B. Hudson & M. Meyer (Eds), Beyond fragmentation: Didactics, learning, and teaching in Europe (pp. 47–59). Portland, OR: Barbara Budrich.Google Scholar
  67. Johansson, A.-M., & Wickman, P.-O. (2018). The use of organising purposes in science instruction as a scaffolding mechanism to support progressions: A study of talk in two primary science classrooms. Research in Science & Technological Education, 36(1), 1–16.Google Scholar
  68. Johsua, S., & Dupin, J. J. (1987). Taking into account student conceptions in instructional strategy: An example in physics. Cognition and Instruction, 4(2), 117–135.Google Scholar
  69. Kelly, G. J. (2008). Inquiry, activity, and epistemic practice. In R. Duschl & R. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 99–117). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  70. Kelly, G. J. (2011). Scientific literacy, discourse, and epistemic practices. In C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erikson, & A. McKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 61–73). New York: Routledge.Google Scholar
  71. Kelly, G. J. (2016). Methodological considerations for the study of epistemic cognition in practice. In J. Greene, W. Sandoval, & I. Bråten (Eds.), Handbook of epistemic cognition (pp. 393–408). New York, NY: Routledge.Google Scholar
  72. Kelly, G. J., McDonald, S., & Wickman, P.-O. (2012). Science learning and epistemology. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (Vol. 1, pp. 281–291). Dordrecht: Springer.Google Scholar
  73. Knorr-Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge, MA: Harvard University Press.Google Scholar
  74. Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7–8), 751–773.Google Scholar
  75. Kotô, B. (1893). On the cause of the great earthquake in Central Japan, 1891. The Journal of the College of Science, Imperial University, Japan, 5, 295–353.Google Scholar
  76. Krogh, L. B., & Nielsen, K. (2013). Introduction: How science works—and how to teach it. Science & Education, 22(9), 2055–2065.Google Scholar
  77. Kuhn, T. (1977). Second thoughts on paradigm. In T. Kuhn (Ed.), The essential tension: Selected studies in scientific tradition and change (pp. 293–319). Chicago: University of Chicago Press.Google Scholar
  78. Lederman, J., Lederman, N., Wickman, P.-O., & Lager-Nyqvist, L. (2007). An international, systematic investigation of the relative effects of inquiry and direct instruction. Presented at European Science Education Research Association (ESERA) Conference, Malmö, Sweden, August 21–25.Google Scholar
  79. Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood, NJ: Ablex.Google Scholar
  80. Lemke, J. L. (2000). Across the scales of time: Artifacts, activities, and meanings in ecosocial systems. Mind, Culture, and Activity, 7(4), 273–290.Google Scholar
  81. Lidar, M., Lundqvist, E., & Östman, L. (2006). Teaching and learning in the science classroom: The interplay between teachers’ epistemological moves and students’ practical epistemology. Science Education, 90(1), 148–163.Google Scholar
  82. Lidar, M., Almqvist, J., & Östman, L. (2010). A pragmatist approach to meaning making in children’s discussions about gravity and the shape of the earth. Science Education, 94(4), 689–709.Google Scholar
  83. Mallet, R. (1846). On the dynamics of earthquakes; being an attempt to reduce their observed phenomena to the known laws of wave motion in solids and fluids. The Transactions of the Royal Irish Academy, 21, 51–105.Google Scholar
  84. Mercier, A., Schubauer-Leoni, M., & Sensevy, G. (2002). Vers une didactique comparée. Revue Française de Pédagogie, 141, 5–16.Google Scholar
  85. Morales, G., Sensevy, G., & Forest, D. (2017). About cooperative engineering: Theory and emblematic examples. Educational Action Research, 25(1), 128–139.Google Scholar
  86. Ohlsson, S. (1996). Learning to do and learning to understand: A lesson and challenge for cognitive modeling. In P. Reiman & H. Spada (Eds.), Learning in humans and machine (pp. 37–62). Oxford: Pergamon.Google Scholar
  87. Olander, C., Wickman, P.-O., Tytler, R., & Ingerman, A. (2018). Representations as mediation between purposes as junior secondary science students learn about the human body. International Journal of Science Education, 40(2), 204–226.Google Scholar
  88. Oreskes, N. (2003). Plate tectonics: An insider’s history of the modern theory of the earth. Boulder, CO: Westview Press.Google Scholar
  89. Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638.Google Scholar
  90. Östman, L., & Wickman, P.-O. (2014). A pragmatic approach on epistemology, teaching, and learning. Science Education, 98(3), 375–382.Google Scholar
  91. Peirce, C.-S. (1878). How to make our ideas clear. Popular Science Monthly, 12, 286–302.Google Scholar
  92. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.Google Scholar
  93. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486–511.Google Scholar
  94. Reid, H. F. (1910). The mechanics of the earthquake, the California earthquake of April 18, 1906, report of the state investigation commission (Vol. 2). Washington, DC: Carnegie Institution of Washington.Google Scholar
  95. Roth, W.-M. (2007). Doing teacher-research. Rotterdam: Sense Publishers.Google Scholar
  96. Roth, W.-M., & Jornet, A. (2014). Toward a theory of experience. Science Education, 98(1), 106–126.Google Scholar
  97. Ryle, G. (2009). Teaching and Training. In Collected Essays 1929–1968: Collected Papers Volume 2 (pp. 464–478). London ; New York: Routledge.Google Scholar
  98. Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634–656.Google Scholar
  99. Santini, J. (2007). Jeux épistémiques et modélisation en classe ordinaire: les séismes au cours moyen. Didaskalia, 31, 47–83.Google Scholar
  100. Santini, J., & Sensevy, G. (2011). Conceptual understanding and epistemic games. A case study at grade 5. Presented at European Science Education Research Association (ESERA) Conference, Lyon, France, September 5–9.Google Scholar
  101. Schatzki, T. R., Knorr-Cetina, K., & von Savigny, E. (2001). The practice turn in contemporary theory. In London. New York: Routlegde.Google Scholar
  102. Schubauer-Leoni, M.-L., & Leutenegger, F. (2002). Expliquer et comprendre dans une approche clinique/expérimentale du didactique ordinaire. In F. Leutenegger & M. Saada-Robert (Eds.), Expliquer et comprendre en sciences de l’éducation (pp. 227–251). Bruxelles: De Boeck.Google Scholar
  103. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76.Google Scholar
  104. Sensevy, G. (2011). Le Sens du Savoir. Eléments pour une Théorie de l’Action Conjointe en Didactique. Bruxelles: De Boeck.Google Scholar
  105. Sensevy, G. (2012a). About the joint action theory in didactics. Zeitschrift für Erziehungswissenschaft, 15(3), 503–516.Google Scholar
  106. Sensevy, G. (2012b). Le jeu comme modèle de l’activité humaine et comme modèle en théorie de l’action conjointe en didactique. Quelques remarques. Nouvelles Perspectives en Sciences Sociales, 7(2), 105–132.Google Scholar
  107. Sensevy, G. (2014). Characterizing teaching effectiveness in the joint action theory in didactics: An exploratory study in primary school. Journal of Curriculum Studies, 46(5), 577–610.Google Scholar
  108. Sensevy, G. (2015a). Action and science learning. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 10–12). New York, London: Springer Dordrecht.Google Scholar
  109. Sensevy, G. (2015b). Milieu. In R. Gunstone (Ed.), Encyclopedia of Science Education (p. 639–641). New York, London: Springer Dordrecht.Google Scholar
  110. Sensevy, G., & Forest, D. (2012). Semiosis process in instructional practice. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds), The future of learning: Proceedings of the 10th international conference of the learning sciences (ICLS 2012) (Vol. 1, p. 17–24). Sidney, Australia: International Society of the Learning Sciences.Google Scholar
  111. Sensevy, G., Forest, D., Quilio, S., & Morales, G. (2013). Cooperative engineering as a specific design-based research. ZDM, The International Journal on Mathematics Education, 45(7), 1031–1043.Google Scholar
  112. Sensevy, G., Schubauer-Leoni, M. L., Mercier, A., Ligozat, F., & Perrot, G. (2005). An attempt to model the teacher’s action in the mathematics class. Educational Studies in Mathematics, 59(1), 153–181.Google Scholar
  113. Sensevy, G., Tiberghien, A., Santini, J., Laubé, S., & Griggs, P. (2008). An epistemological approach to modeling: Cases studies and implications for science teaching. Science Education, 92(3), 424–446.Google Scholar
  114. Sensevy, G., & Tiberghien, A. (2015). Agency and knowledge. In R. Gunstone (Ed.) Encyclopedia of Science Education (pp. 27–30). New York, London: Springer Dordrecht.Google Scholar
  115. Sezen-Barrie, A. (2018). Utilizing professional vision in supporting preservice teachers’ learning about contextualized scientific practices. Science & Education, 27(1–2), 159–182.Google Scholar
  116. Shaffer, D. W., & Serlin, R. C. (2004). What good are statistics that don’t generalize? Educational Researcher, 33(9), 14–25.Google Scholar
  117. Stern, D. G. (2003). The practical turn. In S. Turner & P. Roth (Eds.), The Blackwell guide to the philosophy of the social sciences (pp. 185–206). Oxford: Blackwell.Google Scholar
  118. Thivent, V. (2006). Il y cent ans: le séisme de San Francisco (1). 1906: sismologie, année zéro. La Recherche, 395, 52–57.Google Scholar
  119. Tiberghien, A. (2016). How does knowledge live in a classroom? In N. Papadouris, A. Hadjigeorgiou, & C. Constantinou (Eds.), Insights from research in science teaching and learning (pp. 11–27). Dordrecht: Springer.Google Scholar
  120. Tiberghien, A., & Sensevy, G. (2015). Transposition Didactique (Didactic Transposition). In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 1082–1085). New York, London: Springer Dordrecht.Google Scholar
  121. Tiberghien, A., Cross, D., & Sensevy, G. (2014). The evolution of classroom physics knowledge in relation to certainty and uncertainty. Journal of Research in Science Teaching, 51(7), 930–961.Google Scholar
  122. Tiberghien, A., Malkoun, L., Buty, C., Souassy, N., & Mortimer, E. (2007). Analyse des savoirs en jeu en classe de physique à différentes échelles de temps. In G. Sensevy & A. Mercier (Eds.), Agir ensemble (pp. 93–122). Rennes: PUR.Google Scholar
  123. Tuminaro, J., & Redish, E. F. (2007). Elements of a cognitive model of physics problem solving: Epistemic games. Physical Review Special Topics-Physics Education Research, 3(2).  https://doi.org/10.1103/PhysRevSTPER.3.020101.
  124. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45–69.Google Scholar
  125. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535–585.Google Scholar
  126. Warfield, V. (2014). Invitation to Didactique. New York: Springer-Verlag.Google Scholar
  127. Welzel, M., & Roth, W.-M. (1998). Do interviews really assess students’ knowledge? International Journal of Science Education, 20(1), 25–44.Google Scholar
  128. Wickman, P.-O. (2004). The practical epistemologies of the classroom: A study of laboratory work. Science Education, 88(3), 325–344.Google Scholar
  129. Wickman, P.-O. (2006). Aesthetic Experience In Science Education: Learning And Meaning-making As Situated Talk And Action. Mahwah. Lawrence Erlbaum Associates.Google Scholar
  130. Wickman, P.-O., & Östman, L. (2002). Learning as discourse change: A sociocultural mechanism. Science Education, 86(5), 601–623.Google Scholar
  131. Wittgenstein, L. (1997). Philosophical investigations. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.University of Côte d’AzurNiceFrance
  2. 2.University of Aix-MarseilleMarseilleFrance
  3. 3.University of Western BrittanyBrestFrance

Personalised recommendations