Advertisement

Dependence of the Magnetization Kinetics of Magnetic Dispersed Nanosystems on the Dispersed Phase Concentration and the Change of Its State

  • Yu. I. DikanskyEmail author
  • A. G. IspiryanEmail author
  • S. A. KunikinEmail author
Article

The paper presents the results of experimental investigation of the magnetization relaxation processes in an ensemble of magnetic nanoparticles. The experimental results show a nonlinear dependence of the magnetic susceptibility on the volume concentration of the magnetic nanoparticles. Dependences of the magnetization relaxation time on the concentration and temperature of the magnetic nanoparticles are determined from an analysis of the frequency and temperature dependences of the magnetic susceptibility. A complex nonmonotonic dependence of the magnetization relaxation time on the magnetic particle concentration and temperature dependence of the magnetic susceptibility close to exponential one characteristic for a system of interacting dipole particles in the state of the so-called dipole glass have been established. The special features of the magnetization relaxation are caused by the interaction of particles and the change of the structure of the magnetic particle ensemble.

Keywords

magnetic nanoparticles magnetic susceptibility superparamagnetism magnetic relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Shliomis, Sov. Phys. Usp., 17, 153 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. I. Dikansky, Magnetohydrodynamics, 3, 237 (1982).Google Scholar
  3. 3.
    A. F. Pshenichnikov and A. V. Lebedev, Colloid J., 67, No. 2, 189 (2005).CrossRefGoogle Scholar
  4. 4.
    A. O. Ivanov and O. B. Kuznetsova, J. Magn. Magn. Mater., 252, 1 (2002).CrossRefGoogle Scholar
  5. 5.
    Yu. I. Dikansky et al., Tech. Phys., 60, 8 (2015).CrossRefGoogle Scholar
  6. 6.
    A. O. Ivanov and O. B. Kuznetsova, Colloid J., 68, No. 4, 430–440 (2006).CrossRefGoogle Scholar
  7. 7.
    A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E, 64, No 4, 405 (2001).Google Scholar
  8. 8.
    A. O. Ivanov, V. S. Zverev, and S. S. Kantorovich, Soft Matter, 12, No. 15, 3507–3513 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    Y. I. Dikansky, D. V. Gladkikh, S. A. Kunikin, and A. A. Zolotukhin, Magnetohydrodynamics, 48, 3 (2012).CrossRefGoogle Scholar
  10. 10.
    A. A. Minakov, I. A. Zaitsev, and U. I. Lesnih, J. Magn. Magn. Mater., 85, 1 (1990).CrossRefGoogle Scholar
  11. 11.
    J. Zhang, C. Boyd, and W. Luo, Phys. Rev. Lett., 77, 390 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.North Caucasus Federal UniversityInstitute of Mathematics and Natural SciencesStavropolRussia

Personalised recommendations