Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Doping on the Luminescent Properties of LED Heterostructures with Quantum Wells

  • 1 Accesses

It is established that the model of interband radiative recombination in a semiconductor under bipolar injection of charge carriers, in which the recombination rate is described by the product of the total charge carrier concentrations, does not take into account the imbalance in the concentrations of recombining particles physically existing during doping. To calculate the number of electron-hole pair recombination events taking into account the difference in the concentrations of recombining particles, it is proposed to use the calculation of the reciprocal sum of the reciprocal concentrations using the participation functions. It is shown that at such a description of the number of recombination events, an increase in the doping impurity concentration reduces the number of events, but leaves the radiative recombination time unchanged at any injection level.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zh. I. Alferov, Fiz. Tekh. Poluprovodn., 32, No. 1, 3–18 (2000).

  2. 2.

    F. E. Shubert, Light Emitting Diodes, 2-nd edition [Russian translation], Fizmatlit, Moscow (2008).

  3. 3.

    T. Moss, G. Barrel, and B. Ellis, Semiconductor Optoelectronics [Russian translation], Mir, Moscow (1976).

  4. 4.

    V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics [in Russian], Nauka, Moscow (1990).

  5. 5.

    Zh. Pankov, Optical Processes in Semiconductors [Russian translation], Mir, Moscow (1973).

  6. 6.

    G. I. Epifanov, Physical Foundations of Microelectronics [in Russian], Sov. Radio, Moscow (1971); G. I. Epifanov, Solid State Physics [in Russian], Lan’, St.Petersburg (2011).

  7. 7.

    V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Non-Radiative Recombination in Semiconductors [in Russian], Izd. “B. P. Konstantinov Peterburg. Inst. Yadern. Fiz. RAN”, St. Petersburg (1997).

  8. 8.

    D. A. Bogdanov, G. A. Gorbatovskii, V. N. Verbitskii, et al., Fiz. Tekh. Poluprovodn., 51, No. 1, 1229–1234 (2017).

  9. 9.

    A. Vashchenko, D. O. Goryachii, A. G. Vitukhnovskii, et al., Fiz. Tekh. Poluprovodn., 50, No. 1, 120–124 (2016).

  10. 10.

    E. G. Glukhovskii and N. D. Zhukov, Pis’ma Zh. Tekh. Fiz., 41, Vyp. 14, 47–55 (2015).

  11. 11.

    N. E. Korsunskaya, E. P. Shul’ga, T. R. Stara, et al., Fiz. Tekh. Poluprovodn., 50, No. 1, 112–119 (2016).

  12. 12.

    M. I. Veksler, S. E. Tyaginov, Yu. Yu. Illarionov, et al., Fiz. Tekh. Poluprovodn., 47, No. 5, 675–683 (2013).

  13. 13.

    P. S. Vergelis and E. B. Yakimov, Fiz. Tekh. Poluprovodn., 49, No. 2, 149–154 (2015).

  14. 14.

    Sh. Abdinov, R. F. Babaeva, R. M. Rzaev, et al., Fiz. Tekh. Poluprovodn., 50, No. 1, 35–38 (2016).

  15. 15.

    N. D. Il’inskii, S. A. Karandashev, N. G. Karpukhina, et al., Fiz. Tekh. Poluprovodn., 50, No. 5, 657–662 (2016).

  16. 16.

    N. Akimov, A. E. Klimov, I. G. Neizvestnyi, et al., Fiz. Tekh. Poluprovodn., 50, No. 4, 447–453 (2016).

  17. 17.

    S. V. Sorokin, S. V. Gronin, I. V. Sedova, et al., Fiz. Tekh. Poluprovodn., 49, No. 3, 342–348 (2015).

  18. 18.

    V. N. Davydov, S. V. Kharitonov, and N. E. Lugina, Fiz. Tekh. Poluprovodn., 51, No. 9, 1223–1228 (2017).

Download references

Author information

Correspondence to V. N. Davydov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 19–25, October, 2019

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davydov, V.N., Zadorozhny, O.F. Effect of Doping on the Luminescent Properties of LED Heterostructures with Quantum Wells. Russ Phys J (2020). https://doi.org/10.1007/s11182-020-01905-y

Download citation

Keywords

  • emission of radiation
  • radiative recombination rate
  • participation functions