Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradable Electrically Conductive Polycaprolacton-Based Composites Filled with Carbon Nanotubes

  • 3 Accesses

Electrophysical, morphological, rheological, and structural properties of new polymer composites based on polycaprolactone filled with single-walled carbon nanotubes are studied. It is shown that the percolation threshold for the developed composites is observed when the carbon nanotubes content is about 0.1 wt %. It is found that the degree of crystallinity of the composites increases by more than 60% compared to the pure polycaprolactone. The addition of carbon nanotubes to the polymer matrix leads to a decrease in the average size of crystallites, while their number increases essentially. It is shown that the developed composites can be treated by extrusion. Even when the content of carbon nanotubes is 1.0 wt %, the melt flow index is at least 0.5 g/10 min

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. A. Mitchell and R. Krishnamoorti, Macromolecules, 40, 1538–1545 (2007), https://doi.org/10.1021/ma0616054.

  2. 2.

    L. Pan, X. Pei, R. He, et al., Colloids and Surfaces B: Biointerfaces, 93, 226–234 (2012), https://doi.org/10.1016/j.colsurfb.2012.01.011.

  3. 3.

    E. M. Gonçalves, F. J. Oliveira, R. F. Silva, et al., J. Biomed. Mater. Res., Part B, 104B, 1210–1219 (2015), https://doi.org/10.1002/jbm. b.33432.

  4. 4.

    C. M. B. Ho, A. Mishra, P. T. P. Lin, et al., Macromol. Biosci. (2016), https://doi.org/10.1002/mabi.201600250.

  5. 5.

    F. Luo, L. Pan, X. Pei, et al., Handbook of Polymer Nanocomposites. Processing, Performance and Application. V. B: Carbon Nanotube Based Polymer Composites, eds. K. K. Kar, et al., Springer Verlag, Berlin, Heidelberg, 173–193 (2015), https://doi.org/10.1007/978-3-642-45229-1_41.

  6. 6.

    R. Langer and J. P. Vacanti, Science, 260, 920–926 (1993), https://doi.org/10.1126/science.8493529.

  7. 7.

    S. S. Crump, Proc. ASME annual winter conference, Atlanta, USA, 50, 53–60 (1991).

  8. 8.

    S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, Int. Adv. Manufact. Technol., 67, 1191–1203 (2013), https://doi.org/ https://doi.org/10.1007/s00170-012-4558-5.

  9. 9.

    D. W. Hutmacher, Biomaterials, 21, 2529–2543 (2000).

  10. 10.

    D. W. Hutmacher, T. Schantz, and I. Zein, J. Biomed. Mater. Res., 55, 203–216 (2001).

  11. 11.

    D. Rohner, D. W. Hutmacher, T. K. Cheng, et al., J. Biomed. Mater. Res. B: Appl. Biomater., 66B, 574–580 (2003), https://doi.org/10.1002/jbm.b.10037.

  12. 12.

    B. Sitharaman, X. Shi, X. F. Walboomers, et al., Bone, 43, 362–370 (2008), https://doi.org/10.1016/j.bone.2008.04.013.

  13. 13.

    P. R. Supronowicz, P. M. Ajayan, K. R. Ullmann, et al., J. Biomed. Mater. Res., 59, 499–506 (2002), https://doi.org/10.1002/jbm.10015.

  14. 14.

    C. A. Bassett and R. O. Becker, Science, 137, 1063–1064 (1962).

  15. 15.

    C. A. Bassett, R. J. Pawluk, and R. O. Becker, Nature, 204, 652–654 (1964).

  16. 16.

    M. M. Coleman and J. Zarian, J. Polym. Sci. Part B: Polym. Phys., 17, 837–850 (1979).

  17. 17.

    A. Elzubair, C. N. Elias, J. C. M. Suarez, et al., J. Dent., 34, 784–789 (2006), https://doi.org/10.1016/j.dent.2006.03.002.

  18. 18.

    R. Li, K. Nie, X. Shen, and S. Wang, Mater. Lett., 61, 1368–1371 (2007), https://doi.org/10/1016/j.matlet.2006.07.032.

  19. 19.

    I. Navarro-Baena, A. Marcos-Fernandez, J. M. Kenny, and L. Peponi, J. Appl. Cryst., 47, 1948–1957 (2014), https://doi.org/ https://doi.org/10.1107/S1600576714022468.

  20. 20.

    E. C. Chen and T. M. Wu, Polym. Degrad. Stab., 92, 1009–1015 (2007), https://doi.org/10.1016/j.polymdegradstab.2007.02.019.

  21. 21.

    S. M. Lebedev, O. S. Gefle, and S. N. Tkachenko, J. Electrostat., 68, 122–127 (2010), https://doi.org/10.1016/j.elstat.2009.11.007.

  22. 22.

    S. M. Lebedev, O. S. Gefle, and M. V. Semenikhin, J. Korean Powder Metal. Inst., 18, 181– 187 (2011), https://doi.org/10.4150/kpmi.2011.18.2.181.

  23. 23.

    C. Olmo, H. Amestoy, M. T. Casas, et al., Polymers, 9, 322–339 (2017), https://doi.org/10.3390/polym9080322.

  24. 24.

    T. P. Gumede, A. S. Luyt, and A. J. Müller, Express Polym. Lett., 12, 505–529 (2018), https://doi.org/10.3144/expresspolymlett.2018.43.

Download references

Author information

Correspondence to S. M. Lebedev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 3–11, October, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lebedev, S.M., Amitov, E.T. & Mikutskiy, E.A. Biodegradable Electrically Conductive Polycaprolacton-Based Composites Filled with Carbon Nanotubes. Russ Phys J (2020). https://doi.org/10.1007/s11182-020-01903-0

Download citation

Keywords

  • poly (ε-caprolactone)
  • biodegradable electrically conductive composites poly(ε -caprolactone)/ carbon nanotubes
  • degree of crystallinity