Advertisement

On the Question of the Existence of a One-dimensional Hydrogen Molecule

  • V. V. SkobelevEmail author
ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY

Analytical and numerical methods are used to analyze for the first time the possibility of the existence of a one-dimensional hydrogen molecule H2. The conclusions of this work can in principle be verified experimentally: for example, one-dimensional Na atoms were experimentally obtained quite recently. Because of fundamental computational difficulties associated with the divergence of one-dimensional integrals at small distances, only the very possibility of the existence of such molecules is proven without specification of their energy characteristics (binding energy, etc.).

Keywords

one-dimensional molecule hydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Görlitz, J. M. Vogels, A. E. Leanhardt, et al. // Phys. Rev. Lett., 87, 130402 (2001).Google Scholar
  2. 2.
    U. Eichmann, V. Lange, and W. Sandner, Phys. Rev. Lett., 64, 274 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Skobelev, J. Exp. Тheor. Phys., 124, No. 6, 877 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Skobelev, J. Exp. Тheor. Phys., 126, No. 3, 333 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Skobelev, Russ. Phys. J., 61, No. 5, 887 (2018).CrossRefGoogle Scholar
  6. 6.
    A. A. Sokolov, Yu. M. Loskutov, and I. M. Ternov, Quantum Mechanics Holt, Rinehart & Winston, Austin (1966).Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, London (1977).zbMATHGoogle Scholar
  8. 8.
    E. A. Hylleraas, Z. Phys., 63, 291 (1930).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Hylleraas, Z. Phys., 63, 771 (1930).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Skobelev, J. Exp. Тheor. Phys., 126, No. 5, 645 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Skobelev, Russ. Phys. J., 60, No. 9, 1495 (2017).CrossRefGoogle Scholar
  12. 12.
    R. London, Am. J. Phys., 27, 649 (1959).ADSCrossRefGoogle Scholar
  13. 13.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, Cambridge, MA (2000).Google Scholar
  14. 14.
    V. V. Skobelev, Russ. Phys. J., 61, No. 2, 312 (2018).CrossRefGoogle Scholar
  15. 15.
    V. V. Skobelev, Russ. Phys. J., 58, No. 2, 163 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations