Advertisement

Thermal Stability of Structure and Properties of Gradient and Gradient-Layered Coatings of the Ti–Al–Si–Cu–N System

  • S. V. OvchinnikovEmail author
  • Yu. P. Pinzhin
Article

Using the methods of dark-field electron microscopy analysis, energy-dispersive X-ray microanalysis, hardness measurements and scratch testing, the variations of elemental composition, structure and mechanical properties of gradient and gradient-layered coatings of the Ti–Al–Si–Cu–N system are investigated during annealing in vacuum at the temperatures within the range 973–1373 K. It is found out that at the annealing temperatures up to 1173 K such structural changes as equalization of the nitride-phase lattice parameter throughout the coating thickness and decreased lattice bending are due to the diffusion-induced redistribution followed by a drop in the concentration of the nitride-doping elements and precipitation of the nanosized copper crystals. For the annealing temperature 1373 K, a several-fold (compared to the state after deposition) decrease in the nitride-phase crystal lattice bending and a change in the concentration of the elements of a few tens of percent are revealed, as well as the formation of heterophase nanocrystalline structure during their localization at the interfaces. A similarity of the defect microstructure in the crystals of both coatings after annealing at 1373 K is determined. The influence of the structural-phase transformations on the variations in the hardness and adhesion strength values of the coatings is discussed.

Keywords

gradient and gradient-layered coatings vacuum annealing electron microscopy lattice bending phase transformations hardness scratch-testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yi Xi Wang and Sam Zhang, Surf. Coat. Technol., 258, 1–16 (2014).Google Scholar
  2. 2.
    A. R. Shugurov and A. V. Panin, Phys. Mesomech., 20, No. 4, 472–479 (2017).CrossRefGoogle Scholar
  3. 3.
    S. V. Ovchinnikov and Yu. P. Pinzhin, Russ. Phys. J., 59, No. 6, 799–808 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Veprek, M. G.J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films, 476, 1–29 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    K. P. Andreasen, T. Jensen, J. H. Petersen, et al., Surf. Coat. Technol., 182, 268–275 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Parlinska-Wojtan, A. Karimi, O. Coddet, et al., Surf. Coat. Technol., 188–189, 344–350 (2004).Google Scholar
  7. 7.
    A. Flink, J. M. Andersson, B. Alling, et al., Thin Solid Films, 517, 714–721 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    L. Hultman, Vacuum, 57, 1–30 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    R. Daniel, J. Musil, P. Zeman, and C. T. Mitterer, Surf. Coat. Technol., 201, 3368–3376 (2006).CrossRefGoogle Scholar
  10. 10.
    P. H. Mayrhofer and C. Mitterer, Surf. Coat. Technol., 133–134, 131–137 (2000).Google Scholar
  11. 11.
    P. H. Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, Thin Solid Films, 415, 151–159 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    I. Zukerman, A. Raveh, Y. Shneor, et al., Surf. Coat. Technol., 201, 6161–6166 (2007).CrossRefGoogle Scholar
  13. 13.
    Ph. V. Kiryukhantsev-Korneev, D. V. Shtansky, M. I. Petrzhil, et al., Surf. Coat. Technol., 201, 6143–6147 (2007).Google Scholar
  14. 14.
    P. H. Mayrhofer, H. Willmann, and A. E. Reiter, Surf. Coat. Technol., 202, 4935– 4938 (2008).CrossRefGoogle Scholar
  15. 15.
    S. V. Ovchinnikov, A. D. Korotaev, and Yu. P. Pinzhin, AIP Conf. Proc., 1623, 466–469 (2014).Google Scholar
  16. 16.
    W. C. Oliver and G. M. Pharr, J. Mater. Res., 7, No. 6, 1564–1583 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    F. Pinakidou, E. C. Paloura, G. M. Matenoglou, and P. Patsalas, Surf. Coat. Technol., 204, 1933–1936 (2010).CrossRefGoogle Scholar
  18. 18.
    A. N. Tyumentsev, A. D. Korotaev, and Yu. P. Pinzhiun, Zh. Fizich. Mezomekh., 7, No. 4, 35–53 (2004).Google Scholar
  19. 19.
    Yu. A. Nechaev and M. Kamyshov, Izvestiya Akad. Nauk. Metally, No. 6, 50–53 (1969).Google Scholar
  20. 20.
    P. B. Hirsh, A. Howie, R. B. Nicholson, et al., Electron Microscopy of Thin Crystals, Butterworths, London (1965).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations