Advertisement

Russian Physics Journal

, Volume 62, Issue 8, pp 1486–1494 | Cite as

Peculiarities of Structure Formation in Copper/Steel Bimetal Fabricated by Electron-Beam Additive Technology

  • K. S. OsipovichEmail author
  • A. V. Chumaevskii
  • A. A. Eliseev
  • K. N. Kalashnikov
  • E. A. Kolubaev
  • V. E. Rubtsov
  • E. G. Astafurova
Article
  • 4 Downloads

In the present paper, the microstructure of heterogeneous material bimetal compound fabricated by wire-feed electron-beam additive technology from CrNiTi stainless steel and С11000 copper has been investigated. The bimetallic compound is characterized by the well-defined interface between the two materials and possesses two-phase transition areas on both sides of the interface. The heterogeneity of strength properties (microhardness) in the transition zones is associated with a solid solution hardening of the bimetal basis components and formation of composite structures in the transition zone of the bimetal: spherical inclusions of steel in the copper part and copper inclusions in the steel section. In the copper part of the bimetal sample, a heterogeneous grain structure is formed – areas with macroscale non-equiaxed grain structure and zones with spherical grains were observed. The heterogeneity of grain structure does not have significant influence on the yield strength, but affects the macroscopic deformation pattern of the bimetal copper part, as has been revealed by microstructural analysis of slip traces and grain structure calculated using the Hall–Petch relationship.

Keywords

bimetal stainless steel copper grain structure electron beam additive manufacturing 3D printing mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Yu. Tarasov, A. V. Filippov, N. L. Savchenko, et al., Int. J. Adv. Manuf. Tech., 99, 2353–2363 (2018).CrossRefGoogle Scholar
  2. 2.
    H. D. Carlton, A. Haboub, G. F. Gallegos, et al., Mater. Sci. Eng. A, 651, 406–414 (2016).CrossRefGoogle Scholar
  3. 3.
    K. Schmidtke, F. Palm, and A. Hawkins, Phys. Procedia, 12, 369–374 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    E. Louvis, P. Fox, and C. J. Sutcliffe, Proc. Tech., 211, 275–284 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Yamanaka, W. Saito, M. Mori, et al., Addit. Manuf., 8, 105–109 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Yu. Nikonov, A. M. Zharmukhambetova, A. V. Ponomareva, et al., Phys. Mesomech., 21, 43–50 (2018).CrossRefGoogle Scholar
  7. 7.
    Y. Zhai, H. Galarraga, D. A. Lados, et al., Procedia Eng., 114, 658–666 (2015).CrossRefGoogle Scholar
  8. 8.
    P. Nie, O. A. Ojo, and Z. Li, Acta Mater., 77, 85–95 (2014).CrossRefGoogle Scholar
  9. 9.
    X. Z. Xin, N. Xiang, J. Chen, et al., Mater. Lett., 88, 101–103 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Abe and H. Sasahara, Precis Eng., 45, 387–395 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Meco, G. Pardal, and S. Ganguly, Opt. Lasers Eng., 67, 22–30 (2015).CrossRefGoogle Scholar
  12. 12.
    J. Kar, S. K. Roy, G. G. Roy, et al., Mater. Process. Technol., 233, 174–185 (2016).CrossRefGoogle Scholar
  13. 13.
    O. M. Al-Jamal, S. Hinduja, and L. Li, CIRP Ann., 57, 239–242 (2008).CrossRefGoogle Scholar
  14. 14.
    C. Tana, K. Zhoua, W. Ma, et al., Mater. Design, 155, 77–85 (2018).CrossRefGoogle Scholar
  15. 15.
    S. V. Shukhardin, ed., Bi- and Multicomponent Copper-Based Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  16. 16.
    P. Åkerfeldt, M.-L. Antti, and R. Pederson, Mater. Sci. Eng. A, 674, 428–437 (2016).CrossRefGoogle Scholar
  17. 17.
    É. V. Kozlov, N. A. Konev, A. N. Zhdanov, et al., Fizich. Mesomekh., 4, 93–113 (2004).Google Scholar
  18. 18.
    É. V. Kozlov, A. N. Zhdanov, L. N. Ignatenko, et al., in: Ultrafine Grained Materials II, Warrendale, TMS (2012), pp. 419–428.Google Scholar
  19. 19.
    T. H. Johnston and C. E. Feltner, Metall. Trans., 1, 1161–1167 (1970).CrossRefGoogle Scholar
  20. 20.
    A. M. Glezer, Principles of Plastic Deformation of Nanostructural Materials [in Russian], Fizmatlit, Moscow (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. S. Osipovich
    • 1
    Email author
  • A. V. Chumaevskii
    • 1
  • A. A. Eliseev
    • 1
  • K. N. Kalashnikov
    • 1
  • E. A. Kolubaev
    • 1
  • V. E. Rubtsov
    • 1
  • E. G. Astafurova
    • 1
  1. 1.Institute of Strength Physics and Materials Sciences of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations