Russian Physics Journal

, Volume 62, Issue 8, pp 1417–1427 | Cite as

Extrema of Elastic Properties of Cubic Crystals

  • S. A. MuslovEmail author
  • A. I. Lotkov
  • S. D. Arutyunov

As a rule, a discussion of physical properties of crystals is accompanied by far from simple mathematical calculations based on algebraic expressions in tensor and matrix notations. Such an approach caused by the nature and uniform presentation of properties of crystalline materials makes practical calculations of their specific characteristics and parameters very difficult. By an example of the titanium nickelide crystals, it is shown that the anisotropy coefficient of elastic properties of the cubic syngony crystals, which is equal to the ratio of the extreme values (minimum and maximum) of the shear modulus, is close to the ratio of the extreme values of Young's modulus. Some variants of describing the elastic anisotropy of cubic crystals using a series of dimensional and dimensionless independent indicators are considered. It is shown on a concrete example that they can give significantly different results. Methods of visual interpretation of the elastic properties anisotropy using the corresponding characteristic surfaces and their cross sections are discussed. It is noted that the characteristic surface of the Young's modulus of normal elasticity is the most accessible for construction, although it is not a complete characteristic of the anisotropy of elastic properties of cubic crystals. A method is proposed for visualizing matrices of elastic constants of crystals using the MatLab application package, which provides visual information on the ratio of the values of matrix elements. Single crystals of titanium nickelide TiNi, widely used in various fields of science, technology, and medicine and often discussed in the literature, are considered as an example of calculating the extreme values and parameters of anisotropy, as well as constructing characteristic surfaces and their cross sections.


elastic properties extrema anisotropy crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ziner, Elasticity and Inelasticity of Metals [Russian translation], Izd. Inostr. Lit., Moscow (1954).Google Scholar
  2. 2.
    J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford (1985).Google Scholar
  3. 3.
    Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystal Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  4. 4.
    Elastic Constants and Elastic Moduli of Metals and Nonmetals. Reference Book, ed. by I. N. Frantsevich, Naukova Dumka, Kiev (1982).Google Scholar
  5. 5.
    D. Annin and N. I. Ostrosablin, J. Appl. Mech. Tech. Phys., 49, No. 6, 998–1014 (2008).Google Scholar
  6. 6.
    M. Kevin, J. Elast., 120, 87–108 (2014).Google Scholar
  7. 7.
    T. C. T. Ting, Anisotropic Elasticity: Theory and Applications, Oxford University Press, N. Y. (1996).Google Scholar
  8. 8.
    J. Turle and G. Sines, J. Phys. D. Appl. Phys., 4, 1731–1736 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    J. Turle and G. Sines, J. Phys. D. Appl. Phys., 4, 264–271 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    L. J. Walpole, J. Phys. D. Appl. Phys., 19, 457–462 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    M. Hayes and A. Shuvalov, J. Appl. Mech., 65, 786–787 (1998).Google Scholar
  12. 12.
    R. V. Goldstein, V. A. Gorodtsov, and D. S. Lisovenko, Pis’ma Mater., 2, 21–24 (2012).Google Scholar
  13. 13.
    A. Ballato, IEEE, 43, No. 1, 56–62 (1996).Google Scholar
  14. 14.
    F. Povolo, et al., J. Nucl. Mater., 118, Iss. 1, 78–82 (1983).Google Scholar
  15. 15.
    X. F. Wang, T. E., Jones Li W., and Y. C. Zhou, Phys. Rev. B, 85, 134108 (2012).Google Scholar
  16. 16.
    A. I. Epishin and D. S. Lisovenko, Zh. Tekh. Fiz., 86, Vyp. 10, 74–82 (2016).Google Scholar
  17. 17.
    E. A. Mityushov and S. A. Berestova, Matem. Model. Sistem i Protsess., No. 14, 142–146 (2006).Google Scholar
  18. 18.
    R. A. Adamesku, P. V. Gel’d, and E. A. Mityushov, Anisotropy of Metal Physical Properties [in Russian], Metallurgiya, Moscow (1985).Google Scholar
  19. 19.
    A. Marmier, Z. A. D. Lethbridge, R. I. Walton, et al., Comput. Phys. Commun., 181, 2102 (2010).Google Scholar
  20. 20.
    R. Gaillac, P. Pullumbi, and F.-X. Coudert, J. Phys. Condens. Matter., 28, 275201 (2016).Google Scholar
  21. 21.
    S. A. Muslov, A. V. Shelyakov, and V. A. Andreev, Shape Memory Alloys: Properties, Production, and Application in Technic and Medicine [in Russian], Mozartika, Moscow (2018).Google Scholar
  22. 22.
    I. G. Zakrevskii, V. V. Kokorin, S. A. Muslov, et al., Metallofiz., 8, No. 6, 91–95 (1986).Google Scholar
  23. 23.
    I. Yu. Lebedenko, S. D. Arutyunov, S. A. Muslov, and A. S. Useinov, Vestn. RUDN, Ser. Med., No. 4, 637–638 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. A. Muslov
    • 1
    Email author
  • A. I. Lotkov
    • 2
  • S. D. Arutyunov
    • 1
  1. 1.A. I. Evdokimov Moscow State University of Medicine and DentistryMoscowRussia
  2. 2.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia

Personalised recommendations