Advertisement

Influence of the Adhesion Force and Strain Hardening Coefficient of the Material on the Rate of Adhesive Wear in a Dry Tangential Frictional Contact

  • A. V. DimakiEmail author
  • I. V. Dudkin
  • V. L. Popov
  • E. V. Shilko
Article
  • 3 Downloads

In the paper, we consider the tangential contact of single microasperities of the interacting surfaces the mechanical characteristics of which are close to the characteristics of typical rail steels. Using computer simulation by the method of discrete elements, we study the influence of the parameters of adhesive interaction of both external and internal surfaces on the regime of wear of asperities. It has been established that with increasing adhesion work, the wear regime changes from slipping (low wear) to grinding or brittle fracture of asperities (high wear), and this change is of threshold nature. An empirical sigmoid dependence of the location of the boundary between the two wear regimes (namely, the threshold value of the adhesive stress) on the value of the material hardening coefficient has been established. It is shown that the logistic nature of this dependence is due to the competition of two mechanisms of elastic strain energy dissipation, which determine the wear regime. These are plastic deformation and adhesion of the contacting surfaces. Special discussion is devoted to the influence of the scale factor on the threshold values of the mechanical characteristics of the material which provide the change of the wear regime.

Keywords

adhesive contact fracture wear regimes computer simulation discrete elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Vakis, V. A. Yastrebov, J. Scheibert, et al., Tribol. Int., 125, 169–199 (2018).CrossRefGoogle Scholar
  2. 2.
    Q. Li and V. L. Popov, Phys. Mesomech.., 21, 94–98 (2018).CrossRefGoogle Scholar
  3. 3.
    R. Aghababaei, D. H. Warner, and J.-F. Molinari, Proc. Natl. Acad. Sci. U.S.A., 114, 7935–7940 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. Schirmeisen, Nat. Nanotechnol., 8, 81–82 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    M. Ciavarella and A. Papangelo, Phys. Mesomech., 21, 59–66 (2018).CrossRefGoogle Scholar
  6. 6.
    D. Maugis, J. Adhes. Sci. Technol., 10, 161–175 (1996).Google Scholar
  7. 7.
    Y. I. Rabinovich., J. J. Adler, A. Ata, et al., J. Colloid Interface Sci., 232, 10–16 (2000).Google Scholar
  8. 8.
    J. T. Burwell and C. D. Strand, J. Appl. Phys., 23, 18–28 (1952).Google Scholar
  9. 9.
    J. F. Archard, J. Appl. Phys., 24, 981–988 (1953).Google Scholar
  10. 10.
    E. Rabinowicz, Friction and Wear of Materials, John Wiley & Sons, New York (2013). – P. 125–166.Google Scholar
  11. 11.
    J. Von Lautz, L. Pastewka, P. Gumbsch, and M. Moseler, Tribol. Lett., 63, Art. 26 (2016).Google Scholar
  12. 12.
    T. Brink and J.-F. Molinari, Phys. Rev. Mat., 3, Art. 053064 (2019).Google Scholar
  13. 13.
    E. Rabinowicz, Wear, 2, 4–8 (1958).CrossRefGoogle Scholar
  14. 14.
    R. Aghababaei, D. H. Warner, and J.-H. Molinari, Nat. Commun., 7, Art. 11816 (2016).Google Scholar
  15. 15.
    J. Zhong, R. Shakiba, and J. B. Adams, J. Phys. D, 46, Art. 055307 (2013).Google Scholar
  16. 16.
    K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Lett. Mater., 9, 197–201 (2019).CrossRefGoogle Scholar
  17. 17.
    S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, and A. V. Korchuganov, Sci. Rep., 9, Art. 3867 (2019).Google Scholar
  18. 18.
    L. Jing and O. Stephansson, Fundamentals of Discrete Element Method for Rock Engineering: Theory and Applications, Elsevier, Amsterdam (2007).CrossRefGoogle Scholar
  19. 19.
    D. O. Potyondy and P. A. Cundall, Int. J. Rock. Mech. Min. Sci., 41, 1329–1364 (2004).Google Scholar
  20. 20.
    N. L. Savchenko, A. V. Filippov, S. Yu. Tarasov, et al., Friction, 6, 323–340 (2018).CrossRefGoogle Scholar
  21. 21.
    S. Psakhie, E. Shilko, A. Smolin, et al., Frattura Integr. Strutt., 24, 59–91 (2013).Google Scholar
  22. 22.
    E. V. Shilko, S. G. Psakhie, S. Schmauder, et al., Comp. Mater. Sci., 102, 267–285 (2015).CrossRefGoogle Scholar
  23. 23.
    S. G. Psakhie, A. V. Dimaki, E. V. Shilko, and S. V. Astafurov, Int. J. Num. Meth. Eng., 106, 623–643 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Wu and X. Xu, Rock Mech. Rock Eng., 29, 1813–1830 (2016).Google Scholar
  25. 25.
    N. Bicanic, in: Encyclopaedia of Computational Mechanics, E. Stein, R. de Borst, and T. R. J. Hughes, eds., John Wiley & Sons, Glasgow (2017), pp. 1–38.Google Scholar
  26. 26.
    M. L. Wilkins, Computer Simulation of Dynamic Phenomena, Springer Verlag, Berlin (1999).CrossRefGoogle Scholar
  27. 27.
    F. M. Borodich, Adv. Appl. Mech., 47, 225–366 (2014).Google Scholar
  28. 28.
    M. Inoue, in: Advanced Adhesives in Electornics. Materials, Properties and Applications, M. O. Alam and C. Bailey, eds., Woodhead Publishing, Cambridge (2011), pp. 157–198.Google Scholar
  29. 29.
    D. S. Dugdale, J. Mech. Phys. Solids, 8, 100–104 (1960).Google Scholar
  30. 30.
    D. J. Maugis, J. Colloid Interface Sci., 150, 243–269 (1992).ADSCrossRefGoogle Scholar
  31. 31.
    I. V. Dudkin, E. V. Shilko, and A. V. Dimaki, AIP Conf. Proc., 2051, Art. 020069 (2018).Google Scholar
  32. 32.
    A. M. Glezer, Bull. RAS. Physics, 71, No. 12, 1722 (2007).Google Scholar
  33. 33.
    A. Dimaki, E. Shilko, S. Psakhie, and V. Popov, Facta Univ. Mech. Eng., 16, 41–50 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Dimaki
    • 1
    Email author
  • I. V. Dudkin
    • 1
  • V. L. Popov
    • 2
    • 3
  • E. V. Shilko
    • 1
    • 3
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Technische UniversitätBerlinGermany
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations