Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1306–1311 | Cite as

Plasma Source for Bipolar Electron-Optical System

  • A. S. BugaevEmail author
  • A. A. Goncharov
  • V. I. Gushenets
  • E. M. Oks
Article
  • 4 Downloads
Part of the following topical collections:
  1. Topical Collection on Gun Violence

The paper presents the experimental study of pulsed plasma source with hollow cathode intended for bipolar electron-optical system with open-boundary plasma. The proposed configuration of the plasma source includes two ring-shaped discharge cells based on plasma thruster technology. The plasma source can operate both in a low-current high-voltage mode and a high-current low-voltage mode. The main attention is paid to the highcurrent mode which is similar to the glow discharge positive column. It is found that along with the discharge in closed electron drift the ignition of additional, non-self-sustained hollow cathode discharge with electron oscillation is possible, thus considerably reducing the voltage of the closed-drift discharge. Current–voltage characteristics of the high-current discharge are measured for these conditions. Using the double probe technique, the local plasma parameters are measured together with their spatial distribution in the discharge region. The maximum plasma density along the plasma source axis is (6.5–6.8)•1012 сm–3.

Keywords

plasma source anode layer bipolar electron-optical system plasma accelerator plasma thruster 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Grishin, L. V. Leskov, and E. A. Lyapin, Plasma Accelerators and Ion Guns [in Russian]. Nauka, Moscow (1986), pp. 129–138.Google Scholar
  2. 2.
    A. Ide-Ektessabi, N. Yasui, and D. Okuyama, Rev. Sci. Instrum., 73, 873–876 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Zhurin, H. R. Kaufman, and R. S. Ribinson, Plasma Sources Sci. T., 8, R1–R20 (1991).CrossRefGoogle Scholar
  4. 4.
    M. A. Vlasov, A. V. Zharinov, and Yu. A. Kovalenko, Tech. Phys. Russ. J. Appl. Phys., 46, No. 12, 1522–1529 (2001).Google Scholar
  5. 5.
    S. I. Molokovskii and A. D. Sushkov, Intense Electron and Ion Beams [in Russian], Energoatomizdat, Moscow (1991), pp. 304.Google Scholar
  6. 6.
    A. A. Goncharov, A. M. Dobrovolskiy, S. M. Dunets, et al., Rev. Sci. Instrum., 83, 02B723(1–4) (2012).Google Scholar
  7. 7.
    V. Gushenets, A. Goncharov, A. Dobrovolskiy, et al., IEEE T. Plasma Sci., 41, 2171–2174 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    A. S. Bugaev, A. A. Goncharov, V. I. Gushenets, and E. M. Oks, Izv. Vyssh. Uchebn. Zaved., Fiz., 61, No. 8/2, 27–31 (2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Bugaev
    • 1
    Email author
  • A. A. Goncharov
    • 2
  • V. I. Gushenets
    • 1
  • E. M. Oks
    • 1
    • 3
  1. 1.The Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.The Institute of Physics of the National Academy of Sciences of UkraineKievUkraine
  3. 3.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations