Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1279–1288 | Cite as

Special Features of Parasitic Current Formation in a Sealed-Off Cold-Cathode Thyratron with Trigger Unit Based On an Auxiliary Glow Discharge

  • N. V. LandlEmail author
  • Yu. D. Korolev
  • V. G. Geyman
  • O. B. Frants
  • G. A. Argunov
  • A. V. Bolotov
  • A. V. Akimov
  • P. A. Bak
Article
  • 2 Downloads
Part of the following topical collections:
  1. Topical Collection on Gun Violence

Results of investigation of the glow discharge with hollow cathode and ring anode in the trigger unit of a coldcathode thyratron TPI1-10k/50 are presented. A specific feature of the discharge sustainment is that a highly emissive tablet containing cesium carbonate is placed in the cathode cavity. The current-voltage characteristics of the discharge in the trigger unit are obtained for different tablet compositions together with the measured parasitic current to the main cathode cavity. Stepwise transitions to the regime with decreased discharge burning voltage accompanied by an increase in the parasitic current are observed. A model of current sustainment in a hollow-cathode glow discharge is used to interpret the characteristics obtained. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only the ion bombardment of the cathode, but also the emission current from an external source. Based on estimations of the discharge parameters in the trigger unit, a reason for a parasitic current increase is revealed.

Keywords

cold-cathode thyratron hollow-cathode glow discharge parasitic current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. D. Korolev and N. N. Koval, J. Phys. D, 51, No. 32, 323001 (2018).CrossRefGoogle Scholar
  2. 2.
    R. P. Lamba, V. Pathania, B. L. Meena, et al., Rev. Sci. Instrum., 86, 103508 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    J. Q. Yan, S. K. Shen, Y. A. Wang, et al., Rev. Sci. Instrum., 89, No. 6, 065102 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    K. Frank and J. Christiansen, IEEE Trans. Plasma Sci., 17, No. 5, 748–753 (1989).ADSCrossRefGoogle Scholar
  5. 5.
    A. V. Kozyrev, Y. D. Korolev, V. G. Rabotkin, and I. A. Shemyakin, J. Appl. Phys., 74, No. 9, 5366–5371 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    M. Lin, H. Liao, M. Liu, et al., J. Instrum., 13, 04004 (2018).Google Scholar
  7. 7.
    K. Bergmann, J. Vieker, and A. Wezyk, J. Appl. Phys., 120, No. 14, 143302 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    X. T. Cao, J. Hu, R. X. Zhang, et al., AIP Adv., 7, No. 11, 115005 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    N. Kumar, D. K. Pal, A. S. Jadon, et al., Rev. Sci. Instrum., 87, No. 3, 033503 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    J. Zhang and X. Liu, Phys. Plasmas, 25, No. 1, 013533 (2018).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Zhang and X. Liu, IEEE Trans. Dielectr. Electr. Insul., 24, No. 4, 2050–2055 (2017).CrossRefGoogle Scholar
  12. 12.
    Y. D. Korolev, N. V. Landl, V. G. Geyman, and O. B. Frants, Phys. Plasmas, 25, No. 11, 113510 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    Y. D. Korolev, O. B. Frants, N. V. Landl, et al., Phys. Plasmas, 24, No. 10, 0103526 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    Y. D. Korolev, Rus. J. Gen. Chem., 85, No. 5, 1311–1325 (2015).CrossRefGoogle Scholar
  15. 15.
    Y. D. Korolev, O. B. Frants, N. V. Landl, and A. I. Suslov, IEEE Trans. Plasma Sci., 40, No. 11, 2837–2842 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    N. V. Landl, Y. D. Korolev, V. G. Geyman, and O. B. Frants, Russ. Phys. J., 60, No. 8, 1269 (2017).CrossRefGoogle Scholar
  17. 17.
    V. D. Bochkov, A. V. Kolesnikov, Y. D. Korolev, et al., IEEE Trans. Plasma Sci., 23, No. 3, 341–346 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    J. Zhang, X. Li, Y. Liu, et al., Phys. Plasmas, 23, No. 12, 123525 (2016).ADSCrossRefGoogle Scholar
  19. 19.
    T. Mehr, H. Arentz, P. Bickel, et al., IEEE Trans. Plasma Sci., 23, 324–329 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    V. D. Bochkov, V. M. Dyagilev, V. G. Ushich, et al., IEEE Trans. Plasma Sci., 29, No. 5, 802–808 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., IEEE Trans. Plasma Sci., 43, No. 8, 2349–2353 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 44, No. 1, 110 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    Y. D. Korolev, N. V. Landl, V. G. Geyman, et al., Plasma Phys. Rep., 42, No. 8, 799 (2016).ADSCrossRefGoogle Scholar
  24. 24.
    Y. D. Korolev, O. B. Frants, N. V. Landl, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2087 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. V. Landl
    • 1
    Email author
  • Yu. D. Korolev
    • 1
  • V. G. Geyman
    • 1
  • O. B. Frants
    • 1
  • G. A. Argunov
    • 1
  • A. V. Bolotov
    • 1
  • A. V. Akimov
    • 2
  • P. A. Bak
    • 2
  1. 1.Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.G. I. Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations