Advertisement

Russian Physics Journal

, Volume 62, Issue 7, pp 1228–1234 | Cite as

Optical Recording of the Surface Plasma of Cylindrical Conductors in Strong Magnetic Fields

  • N. A. LabetskayaEmail author
  • V. I. Oreshkin
  • S. A. Chaikovsky
  • I. M. Datsko
  • D. V. Rybka
  • V. A. Van’kevich
Article
  • 3 Downloads

Results are presented of experiments on the explosion of aluminum and titanium conductors that were carried out on a multipurpose impulse generator (MIG) (current amplitude of 2 MA, current rise time of 100 ns) in magnetic fields up to 3 MG. The conductors consisted of two parts: a rod 3 mm in diameter and a tube with the same outer diameter and wall thickness of 250 μm. The surface plasma of the conductor was recorded with the help of an HSFC Pro high-speed optical camera. It has been shown that instabilities on the surface of material with high conductivity (aluminum) are formed later than on the surface of material with low conductivity (titanium). Instabilities appear on the surface of the tube earlier than on the surface of the rod and remain more pronounced over the course of the entire process for both conductor materials. The growth increments of the large-scale instabilities were determined and the mechanism of their formation was analyzed.

Keywords

large-scale instabilities electric explosion of conductors strong magnetic fields high current pulse generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Stygar, T. Awe, J. Bailey, et al., Phys. Rev. Special Topics: Accelerator Beams, 18, 110401 (2015).ADSGoogle Scholar
  2. 2.
    A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, et al., Phys. Rev. STAB, 12, 050402 (2009).ADSGoogle Scholar
  3. 3.
    E. Azizov, S. Alikhanov, E. Velikhov, et al., Plasma Devices Oper., 12,123–132 (2004).CrossRefGoogle Scholar
  4. 4.
    S. Slutz, C. Olson, and P. Peterson, Phys. Plasmas, 10, 429–437 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    E. V. Grabovskii, V. V. Aleksandrov, A. N. Gritsuk, et al., in: Abstracts IEEE Pulsed Power and Plasma Science Conf., San Francisco (2013), p. 224.Google Scholar
  6. 6.
    K. Struve, J. Corley, D. Johnson, et al., in: Digest of Technical Papers of the 12th IEEE Int. Pulsed Power Conf., Vol. 1, Monterey (1999), p. 493.Google Scholar
  7. 7.
    V. P. Smirnov, S. V. Zakharov, E. V. Grabovskii, et al., J. Exp. Theor. Phys. Lett., 81, 442–447 (2006).CrossRefGoogle Scholar
  8. 8.
    V. Mokhov, O. Burenkov, A. Buyko, et al., Fusion Eng. Design, 70, 35–43 (2004).CrossRefGoogle Scholar
  9. 9.
    I. R. Lindemuth, Phys. Plasmas, 22, 122712 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    S. Slutz, M. Herrmann, R. Vesey, et al., Phys. Plasmas, 17, 056303 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    M. R. Gomez, S. A. Slutz, A. B. Sefkow, et al., Phys. Rev. Lett., 113, 155003 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    K. J. Peterson, E. P. Yu, D. B. Sinars, et al., Phys. Plasmas, 20, 056305 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    S. A. Chaikovsky, V. I. Oreshkin, et al., Phys. Plasmas, 21, 042706 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    K. C. Yates, B. S. Bauer, S. Fuelling, et al., Phys. Plasmas, 26, 042708 (2019).ADSCrossRefGoogle Scholar
  15. 15.
    H. Knoepfel, Pulsed High Magnetic Fields, North-Holland, Amsterdam (1970).Google Scholar
  16. 16.
    S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Zh. Tekh. Fiz., 67, No. 4, 32 (1997).Google Scholar
  17. 17.
    G. Shneerson, Sov. Phys. Tech. Phys., 18, 419 (1973).Google Scholar
  18. 18.
    S. A. Chaikovsky, V. I. Oreshkin, I. M. Datsko, et al., Phys. Plasmas, 22, 112704 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Luchinskii, N. A. Ratakhin, V. F. Fedushchak, and A. N. Shepelev, Russ. Phys. J., 40, No. 12, 1178–1184 (1997).CrossRefGoogle Scholar
  20. 20.
    V. K. Petin, S. V. Shljakhtun, V. I. Oreshkin, and N. A. Ratakhin, Tech. Phys., 53, 776–782 (2008).CrossRefGoogle Scholar
  21. 21.
    V. I. Oreshkin, S. A. Chaikovsky, I. M. Datsko, et al., Phys. Plasmas, 23, 122107 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    T. J. Awe, E. P. Yu, K. C. Yates, et al., IEEE Trans. Plasma Sci., 45, No 4, 584–589 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    B. B. Kadomtsev, Collective Phenomena in Plasma [in Russian], Nauka, Moscow (1976).Google Scholar
  24. 24.
    B. B. Kadomtsev, Reviews of Plasma Physics, Vol. 2, M. A. Leontovich, ed., Consultants Bureau, New York (1980).Google Scholar
  25. 25.
    M. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York (1973).CrossRefGoogle Scholar
  26. 26.
    A. A. Ivanov, Physics of Highly Nonequilibrium Plasma [in Russian], Atomizdat, Moscow (1977).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. A. Labetskaya
    • 1
    Email author
  • V. I. Oreshkin
    • 1
    • 2
  • S. A. Chaikovsky
    • 1
    • 3
  • I. M. Datsko
    • 1
  • D. V. Rybka
    • 1
  • V. A. Van’kevich
    • 1
  1. 1.Institute of High Current Electronics of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Institute of Electrophysics of the Ural Division of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations